材料科学
光电探测器
钙钛矿(结构)
响应度
钝化
光电子学
量子点
铟
暗电流
纳米技术
图层(电子)
化学工程
工程类
作者
Zonghui Duan,Jiajia Ning,Mengyu Chen,Yuan Xiong,Wenhong Yang,Fengping Xiao,Stephen V. Kershaw,Ni Zhao,Shumin Xiao,Andrey L. Rogach
标识
DOI:10.1021/acsami.0c06837
摘要
Low-temperature solution-processed methylammonium lead iodide (MAPbI3) crystalline films have shown outstanding performance in optoelectronic devices. However, their high dark current and high noise equivalent power prevent their application in broad-band photodetectors. Here, we applied a facile solution-based antisolvent strategy to fabricate a hybrid structure of CuInSe2 quantum dots (CISe QDs) embedded into a MAPbI3 matrix, which not only enhances the photodetector responsivity, showing a large on/off ratio of 104 at 2 V bias compared with the bare perovskite films, but also significantly (for over 7 days) improves the device stability, with hydrophobic ligands on the CuInSe2 QDs acting as a barrier against the uptake of environmental moisture. MAPbI3/CISe QD-based lateral photodetectors exhibit high responsivities of >0.5 A/W and 10.4 mA/W in the visible and near-infrared regions, respectively, partly because of the formation of a type II interface between the respective semiconductors but most significantly because of the efficient trap-state passivation of the perovskite grain surfaces, and the reduction in the twinning-induced trap density, which stems from both CISe QDs and their organic ligands. A large specific detectivity of 2.2 × 1012 Jones at 525 nm illumination (1 μW/cm2), a fast fall time of 236 μs, and an extremely low noise equivalent power of 45 fW/Hz1/2 have been achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI