催化作用
部分
光化学
拉曼光谱
Atom(片上系统)
旋转交叉
电子结构
吸收光谱法
反应机理
纳米技术
光谱学
化学
组合化学
结晶学
材料科学
计算化学
立体化学
有机化学
物理
量子力学
光学
嵌入式系统
计算机科学
作者
Xuning Li,Changsu Cao,Sung‐Fu Hung,Ying‐Rui Lu,Weizheng Cai,Alexandre I. Rykov,Shu Miao,Shibo Xi,Hongbin Yang,Zehua Hu,Junhu Wang,Jiyong Zhao,Esen Ercan,Wei Xu,Ting‐Shan Chan,Hao Chen,Qihua Xiong,Hai Xiao,Yanqiang Huang,Jun Li
出处
期刊:Chem
[Elsevier BV]
日期:2020-11-20
卷期号:6 (12): 3440-3454
被引量:305
标识
DOI:10.1016/j.chempr.2020.10.027
摘要
The lack of model single-atom catalysts (SACs) and atomic-resolution operando spectroscopic techniques greatly limits our comprehension of the nature of catalysis. Herein, based on the designed model single-Fe-atom catalysts with well-controlled microenvironments, we have explored the exact structure of catalytic centers and provided insights into a spin-crossover-involved mechanism for oxygen reduction reaction (ORR) using operando Raman, X-ray absorption spectroscopies, and the developed operando 57Fe Mössbauer spectroscopy. In combination with theoretical studies, the N-FeN4C10 moiety is evidenced as a more active site for ORR. Moreover, the potential-relevant dynamic cycles of both geometric structure and electronic configuration of reactive single-Fe-atom moieties are evidenced via capturing the peroxido (∗O2−) and hydroxyl (∗OH−) intermediates under in situ ORR conditions. We anticipate that the integration of operando techniques and SACs in this work shall shed some light on the electronic-level insight into the catalytic centers and underlying reaction mechanism.
科研通智能强力驱动
Strongly Powered by AbleSci AI