清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Semantic-Driven Interpretable Deep Multi-Modal Hashing for Large-Scale Multimedia Retrieval

计算机科学 散列函数 特征哈希 动态完美哈希 双重哈希 通用哈希 哈希表 人工智能 理论计算机科学 情报检索 数据挖掘 计算机安全
作者
Xu Lu,Li Liu,Liqiang Nie,Xiaojun Chang,Huaxiang Zhang
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:23: 4541-4554 被引量:31
标识
DOI:10.1109/tmm.2020.3044473
摘要

Multi-modal hashing focuses on fusing different modalities and exploring the complementarity of heterogeneous multi-modal data for compact hash learning. However, existing multi-modal hashing methods still suffer from several problems, including: 1) Almost all existing methods generate unexplainable hash codes. They roughly assume that the contribution of each hash code bit to the retrieval results is the same, ignoring the discriminative information embedded in hash learning and semantic similarity in hash retrieval. Moreover, the length of hash code is empirically set, which will cause bit redundancy and affect retrieval accuracy. 2) Most existing methods exploit shallow models which fail to fully capture higher-level correlation of multi-modal data. 3) Most existing methods adopt online hashing strategy based on immutable direct projection, which generates query codes for new samples without considering the differences of semantic categories. In this paper, we propose a Semantic-driven Interpretable Deep Multi-modal Hashing (SIDMH) method to generate interpretable hash codes driven by semantic categories within a deep hashing architecture, which can solve all these three problems in an integrated model. The main contributions are: 1) A novel deep multi-modal hashing network is developed to progressively extract hidden representations of heterogeneous modality features and deeply exploit the complementarity of multi-modal data. 2) Learning interpretable hash codes, with discriminant information of different categories distinctively embedded into hash codes and their different impacts on hash retrieval intuitively explained. Besides, the code length depends on the number of categories in the dataset, which can reduce the bit redundancy and improve the retrieval accuracy. 3) The semantic-driven online hashing strategy encodes the significant branches and discards the negligible branches of each query sample according to the semantics contained in it, therefore it could capture different semantics in dynamic queries. Finally, we consider both the nearest neighbor similarity and semantic similarity of hash codes. Experiments on several public multimedia retrieval datasets validate the superiority of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
路过完成签到 ,获得积分10
19秒前
蒋不惜完成签到,获得积分10
22秒前
丘比特应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
风清扬应助科研通管家采纳,获得10
24秒前
风清扬应助科研通管家采纳,获得10
24秒前
量子星尘发布了新的文献求助10
27秒前
42秒前
悦悦发布了新的文献求助10
45秒前
48秒前
kuyi完成签到 ,获得积分10
50秒前
学习完成签到 ,获得积分10
55秒前
悦悦完成签到,获得积分10
55秒前
重重重飞完成签到 ,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
寂寞圣贤完成签到,获得积分10
1分钟前
科研通AI5应助阳光的班采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
kalinite发布了新的文献求助30
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
kalinite完成签到,获得积分20
1分钟前
woods完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
阳光的班发布了新的文献求助10
1分钟前
婷婷大侠完成签到,获得积分10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分10
2分钟前
benzene完成签到 ,获得积分10
2分钟前
Emperor完成签到 ,获得积分0
2分钟前
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
风清扬应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885910
求助须知:如何正确求助?哪些是违规求助? 3427928
关于积分的说明 10757211
捐赠科研通 3152733
什么是DOI,文献DOI怎么找? 1740623
邀请新用户注册赠送积分活动 840318
科研通“疑难数据库(出版商)”最低求助积分说明 785313