Confidence intervals after multiple imputation: combining profile likelihood information from logistic regressions

统计 置信区间 插补(统计学) 数学 统计的 贝叶斯概率 逻辑回归 缺少数据 马尔科夫蒙特卡洛 计算机科学 计量经济学
作者
Georg Heinze,Meinhard Ploner,Jan Beyea
出处
期刊:Statistics in Medicine [Wiley]
卷期号:32 (29): 5062-5076 被引量:31
标识
DOI:10.1002/sim.5899
摘要

In the logistic regression analysis of a small-sized, case-control study on Alzheimer's disease, some of the risk factors exhibited missing values, motivating the use of multiple imputation. Usually, Rubin's rules (RR) for combining point estimates and variances would then be used to estimate (symmetric) confidence intervals (CIs), on the assumption that the regression coefficients were distributed normally. Yet, rarely is this assumption tested, with or without transformation. In analyses of small, sparse, or nearly separated data sets, such symmetric CI may not be reliable. Thus, RR alternatives have been considered, for example, Bayesian sampling methods, but not yet those that combine profile likelihoods, particularly penalized profile likelihoods, which can remove first order biases and guarantee convergence of parameter estimation. To fill the gap, we consider the combination of penalized likelihood profiles (CLIP) by expressing them as posterior cumulative distribution functions (CDFs) obtained via a chi-squared approximation to the penalized likelihood ratio statistic. CDFs from multiple imputations can then easily be averaged into a combined CDF c , allowing confidence limits for a parameter β at level 1 - α to be identified as those β* and β** that satisfy CDF c (β*) = α ∕ 2 and CDF c (β**) = 1 - α ∕ 2. We demonstrate that the CLIP method outperforms RR in analyzing both simulated data and data from our motivating example. CLIP can also be useful as a confirmatory tool, should it show that the simpler RR are adequate for extended analysis. We also compare the performance of CLIP to Bayesian sampling methods using Markov chain Monte Carlo. CLIP is available in the R package logistf.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RYL发布了新的文献求助10
1秒前
小蘑菇应助万宁采纳,获得10
4秒前
遇上就这样吧给自觉的时光的求助进行了留言
5秒前
叮咚发布了新的文献求助10
7秒前
七仙女发布了新的文献求助20
8秒前
9秒前
尽快毕业完成签到 ,获得积分10
9秒前
CodeCraft应助耍酷的世平采纳,获得10
9秒前
念头发布了新的文献求助10
12秒前
RYL完成签到,获得积分20
12秒前
科研通AI5应助aa采纳,获得10
12秒前
13秒前
14秒前
殇愈完成签到,获得积分10
14秒前
科研通AI5应助benhzh采纳,获得10
15秒前
汉堡包应助微笑的螃蟹采纳,获得10
15秒前
Wency驳回了孙燕应助
15秒前
16秒前
16秒前
尹山山发布了新的文献求助10
17秒前
BYN发布了新的文献求助20
18秒前
科研通AI5应助滚滚采纳,获得10
20秒前
执葵发布了新的文献求助10
20秒前
20秒前
20秒前
优美丹雪发布了新的文献求助10
21秒前
HMONEY发布了新的文献求助30
23秒前
FashionBoy应助噜噜采纳,获得10
24秒前
Accept应助哈哈哈采纳,获得10
24秒前
完美世界应助敏感煎蛋采纳,获得10
24秒前
科研通AI5应助jinying采纳,获得10
25秒前
科研通AI5应助疯狂的嚓茶采纳,获得10
25秒前
明理一兰发布了新的文献求助10
25秒前
25秒前
勤恳水池发布了新的文献求助10
25秒前
龚涵山完成签到,获得积分10
27秒前
大模型应助Jiao采纳,获得10
27秒前
李健应助优美丹雪采纳,获得10
29秒前
zhongjun发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807517
求助须知:如何正确求助?哪些是违规求助? 3352243
关于积分的说明 10358183
捐赠科研通 3068352
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810113
科研通“疑难数据库(出版商)”最低求助积分说明 765859