Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles

渗透(战争) 细胞膜 生物物理学 材料科学 纳米颗粒 单层 纳米技术 表面结构 化学工程 化学 结晶学 生物化学 生物 运筹学 工程类
作者
Ayush Verma,Oktay Uzun,Yuhua Hu,Ying Hu,Hee‐Sun Han,Nicki Watson,Suelin Chen,Darrell J. Irvine,Francesco Stellacci
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:7 (7): 588-595 被引量:1218
标识
DOI:10.1038/nmat2202
摘要

Nanoscale objects are typically internalized by cells into membrane-bounded endosomes and fail to access the cytosolic cell machinery. Whereas some biomacromolecules may penetrate or fuse with cell membranes without overt membrane disruption, no synthetic material of comparable size has shown this property yet. Cationic nano-objects pass through cell membranes by generating transient holes, a process associated with cytotoxicity. Studies aimed at generating cell-penetrating nanomaterials have focused on the effect of size, shape and composition. Here, we compare membrane penetration by two nanoparticle 'isomers' with similar composition (same hydrophobic content), one coated with subnanometre striations of alternating anionic and hydrophobic groups, and the other coated with the same moieties but in a random distribution. We show that the former particles penetrate the plasma membrane without bilayer disruption, whereas the latter are mostly trapped in endosomes. Our results offer a paradigm for analysing the fundamental problem of cell-membrane-penetrating bio- and macro-molecules. The structural organization of surface groups on nanoparticles is proven to be important for cell membrane penetration. Nanoparticles coated with alternating ribbon-like arrangements of hydrophobic and anionic ligands penetrate membranes without causing disruption. These design rules may have implications for toxicity issues and drug delivery applications of nanomaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
任盈盈完成签到,获得积分10
3秒前
luwei358发布了新的文献求助10
3秒前
3秒前
Peter_Zhu完成签到,获得积分10
3秒前
领导范儿应助Lds采纳,获得10
4秒前
4秒前
Kismet发布了新的文献求助10
5秒前
失眠小猫咪完成签到,获得积分10
6秒前
李爱国应助袄猴采纳,获得10
6秒前
comosum发布了新的文献求助10
6秒前
王小新发布了新的文献求助10
7秒前
修辞完成签到 ,获得积分10
8秒前
松19发布了新的文献求助30
8秒前
llllh发布了新的文献求助10
8秒前
研友_VZG7GZ应助沉静高山采纳,获得10
10秒前
隐形曼青应助美丽的梦槐采纳,获得10
10秒前
12秒前
yanyimeng完成签到,获得积分10
13秒前
bodhi发布了新的文献求助10
13秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
15秒前
我刚上小学完成签到,获得积分10
15秒前
16秒前
16秒前
Ava应助贝利亚采纳,获得10
17秒前
17秒前
llllh完成签到,获得积分20
18秒前
陳新儒完成签到,获得积分10
19秒前
19秒前
无情听南完成签到,获得积分10
20秒前
Lucas应助布曲采纳,获得10
21秒前
Lds发布了新的文献求助10
21秒前
22秒前
跳跃萍发布了新的文献求助10
23秒前
沉静高山发布了新的文献求助10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243