The Theory Behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial

过度拟合 Boosting(机器学习) 提前停车 人工智能 阿达布思 梯度升压 机器学习 估计员 数学 支持向量机 交叉验证 泛化误差 计算机科学 集成学习 正规化(语言学) 估计量的偏差 随机森林 算法 统计 最小方差无偏估计量 人工神经网络
作者
Benyamin Ghojogh,Mark Crowley
出处
期刊:Cornell University - arXiv 被引量:31
摘要

In this tutorial paper, we first define mean squared error, variance, covariance, and bias of both random variables and classification/predictor models. Then, we formulate the true and generalization errors of the model for both training and validation/test instances where we make use of the Stein's Unbiased Risk Estimator (SURE). We define overfitting, underfitting, and generalization using the obtained true and generalization errors. We introduce cross validation and two well-known examples which are $K$-fold and leave-one-out cross validations. We briefly introduce generalized cross validation and then move on to regularization where we use the SURE again. We work on both $\ell_2$ and $\ell_1$ norm regularizations. Then, we show that bootstrap aggregating (bagging) reduces the variance of estimation. Boosting, specifically AdaBoost, is introduced and it is explained as both an additive model and a maximum margin model, i.e., Support Vector Machine (SVM). The upper bound on the generalization error of boosting is also provided to show why boosting prevents from overfitting. As examples of regularization, the theory of ridge and lasso regressions, weight decay, noise injection to input/weights, and early stopping are explained. Random forest, dropout, histogram of oriented gradients, and single shot multi-box detector are explained as examples of bagging in machine learning and computer vision. Finally, boosting tree and SVM models are mentioned as examples of boosting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
球球发布了新的文献求助10
1秒前
1秒前
细腻飞柏完成签到,获得积分20
1秒前
2秒前
斯文败类应助66m37采纳,获得10
2秒前
飞翔的月亮完成签到,获得积分10
3秒前
酷酷的如天完成签到,获得积分10
3秒前
4秒前
华仔应助过雨露采纳,获得10
4秒前
myf完成签到 ,获得积分10
4秒前
5秒前
勇敢发布了新的文献求助10
5秒前
wb完成签到,获得积分10
6秒前
BBB发布了新的文献求助10
6秒前
7秒前
迷路的迎南关注了科研通微信公众号
7秒前
medaW发布了新的文献求助20
7秒前
pu完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
球球完成签到,获得积分10
9秒前
Ava应助Graham采纳,获得10
10秒前
11秒前
SciGPT应助x夏天采纳,获得10
11秒前
我要发sci发布了新的文献求助10
11秒前
随因完成签到,获得积分10
12秒前
13秒前
yuyu完成签到,获得积分10
13秒前
斯文败类应助liyi采纳,获得10
13秒前
BBB完成签到,获得积分10
14秒前
幸福的保温杯完成签到,获得积分10
14秒前
sun_lin发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
孙先生完成签到,获得积分20
15秒前
粱乘风完成签到,获得积分10
15秒前
害怕的蜻蜓完成签到,获得积分10
15秒前
传奇3应助烂漫悟空采纳,获得10
16秒前
suzy发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4474698
求助须知:如何正确求助?哪些是违规求助? 3933372
关于积分的说明 12203591
捐赠科研通 3587878
什么是DOI,文献DOI怎么找? 1972534
邀请新用户注册赠送积分活动 1010264
科研通“疑难数据库(出版商)”最低求助积分说明 903868