已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling canopy transpiration of young poplar trees (Populus × euramericana cv. N3016) based on Back Propagation Artificial Neural Network

蒸腾作用 天蓬 人工神经网络 叶面积指数 反向传播 蒸汽压差 数学 算法 环境科学 计算机科学 人工智能 植物 生物 光合作用
作者
李辉东 LI Huidong,关德新 GUAN Dexin,袁凤辉 YUAN Fenghui,王安志 WANG Anzhi,吴家兵 WU Jiabing,金昌杰 JIN Changjie
出处
期刊:Acta Ecologica Sinica [Acta Ecologica Sinica]
卷期号:35 (12) 被引量:1
标识
DOI:10.5846/stxb201308262155
摘要

PDF HTML阅读 XML下载 导出引用 引用提醒 BP人工神经网络模拟杨树林冠蒸腾 DOI: 10.5846/stxb201308262155 作者: 作者单位: 中国科学院沈阳应用生态研究所;中国科学院大学,中国科学院沈阳应用生态研究所,中国科学院沈阳应用生态研究所,中国科学院沈阳应用生态研究所,中国科学院沈阳应用生态研究所,中国科学院沈阳应用生态研究所 作者简介: 通讯作者: 中图分类号: 基金项目: 国家"十二五"科技支撑计划项目(2011BAD38B0203) Modeling canopy transpiration of young poplar trees (Populus × euramericana cv. N3016) based on Back Propagation Artificial Neural Network Author: Affiliation: State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences,State Key Laboratory of Forest and soil Ecology,Institute of Applied Ecology,Chinese Academy of Sciences Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:利用2008和2010年的气温、饱和差、总辐射和叶面积指数作为模型输入,液流法观测的蒸腾速率作为模型输出,建立了用于杨树林冠蒸腾模拟的BP人工神经网络模型,利用2009年的观测数据对模型的模拟能力进行了检验,并应用连接权值计算得到的输入变量对输出变量的相对贡献进行了敏感性分析。结果表明:建立的BP人工神经网络蒸腾模型可以很好的模拟林冠蒸腾大小和季节变化,模拟的绝对误差和绝对相对误差的平均值分别为0.11 mm/d和9.5%,纳什效率系数为0.83;输入变量对蒸腾的相对贡献以及蒸腾与输入变量之间的相关性大小顺序相同,均为总辐射 > 叶面积指数 > 饱和差 > 气温。 Abstract:Artificial neural network (ANN) is a practical tool and a powerful alternative to mechanism models in operation of hydrology modeling. In this paper, a three layer back propagation (BP) artificial neural network model was developed to estimate the canopy transpiration of young poplar trees (Populus × euramericana cv. N3016) in Northeast China. The combination of air temperature (Ta), vapor pressure deficit (VPD), solar radiation (Rg) and leaf area index (LAI) was chosen as the input variables, while the transpiration measured by sap flow was chosen as output variable. Observational data in growing season of 2008 and 2010 was used to develop model. The number of neurons in the input layer and output layer was 4 and 1, respectively based on the number of input and output variables. Levenberg-Marquardt (LM) algorithm was selected as the learning algorithm to train the network. Tansig and Logsig function were selected as the transfer function in the hidden layer and output layer, respectively. The learning rate and momentum factor were set as 0.1 and 0.01, respectively. The number of neurons in the hidden layer was optimized as 9 by a trial and error method. So the network structure of the developed model was determined as 4:9:1. After 49 times training, the optimal BP ANN transpiration model was determined. The data samples in 2009 were chosen to evaluate the developed model. Results showed that BP ANN transpiration model can successfully simulate the seasonal variation of transpiration. The slope of the regression equation between the simulated and measured transpiration was 0.99, while R2 was 0.85. Maximum and minimum absolute error were 0.28 mm/d and 0.003 mm/d. Mean absolute error and mean absolute relative error were 0.11 mm/d and 9.5%, and Nash-Sutcliffe coefficient of efficiency were 0.83, which all indicated the high accuracy and efficiency of developed BP ANN model. However, compared with the model performance during training process, the accuracy decreased slightly, which turned out the existence of over-fitting. At last, a sensitivity analysis of input variables on transpiration was performed using the connection weights of the developed ANN model to assess the relative importance of input variables. Results showed that the relative contribution of radiation to simulated transpiration (33.46%) was maximal, while that of temperature (16.58%) was minimal. The relative contribution of LAI (30.19%) was larger than that of VPD (19.77%), but less than that of radiation. Magnitude order of correlation coefficient between input variables and transpiration and relative contribution of input variables to transpiration presented the same order of Rg > LAI > VPD > Ta, which provided the physical interpretation of why the developed BP ANN model can well simulate the transpiration despite it did not explain the physical process of transpiration. It must be realized that the data employed for developing ANN model contain important information about the physical process of transpiration. The BP ANN can well learn and remember this kind of information by adjusting its weights during training process, and represent it when new variables in evaluation samples were inputted into the model. 参考文献 相似文献 引证文献
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮白昼发布了新的文献求助10
1秒前
2秒前
2秒前
4秒前
小巧亦竹发布了新的文献求助10
5秒前
fn完成签到,获得积分10
5秒前
6秒前
白雪皑皑发布了新的文献求助10
7秒前
Trey发布了新的文献求助10
8秒前
呼延坤完成签到 ,获得积分10
9秒前
wenwenya发布了新的文献求助10
9秒前
9秒前
Kei应助mastery采纳,获得10
11秒前
凡尔赛老痘完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
Yxk完成签到 ,获得积分10
15秒前
16秒前
zeee完成签到,获得积分10
16秒前
ppsweek发布了新的文献求助10
18秒前
汉堡包应助幸福五采纳,获得10
19秒前
19秒前
19秒前
薛定谔的猫完成签到,获得积分10
19秒前
19秒前
20秒前
haha发布了新的文献求助10
20秒前
Ava应助Trey采纳,获得10
21秒前
21秒前
小巧亦竹完成签到,获得积分10
22秒前
领导范儿应助ppsweek采纳,获得10
22秒前
weilian完成签到,获得积分10
23秒前
AAAA发布了新的文献求助10
23秒前
魏佳旭发布了新的文献求助10
23秒前
烟花应助YS采纳,获得10
24秒前
任性雁露发布了新的文献求助10
24秒前
爆米花应助影子采纳,获得10
25秒前
NexusExplorer应助tyn2024采纳,获得10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401052
求助须知:如何正确求助?哪些是违规求助? 4520107
关于积分的说明 14078072
捐赠科研通 4432959
什么是DOI,文献DOI怎么找? 2433946
邀请新用户注册赠送积分活动 1426122
关于科研通互助平台的介绍 1404738