数学分析
拉普拉斯变换
拉普拉斯方程
三元Laplace方程的Green函数
数学
物理
拉普拉斯逆变换
偏微分方程
作者
Chao Zhang,Lihe Wang,Shulin Zhou,Yun-Ho Kim
标识
DOI:10.3934/cpaa.2014.13.2559
摘要
In this paper we consider the global gradient estimates for weak solutions of $p(x)$-Laplacian type equation with small BMO coefficients in a $\delta$-Reifenberg flat domain. The modified Vitali covering lemma, good $\lambda$-inequalities, the maximal function technique and the appropriate localization method are the main analytical tools. The global Calderon--Zygmund theory for such equations is obtained. Moreover, we generalize the regularity estimates in the Lebesgue spaces to the Orlicz spaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI