风化
材料科学
多孔介质
蒸发
多孔性
复合材料
热力学
物理
作者
Stéphanie Veran-Tissoires,Marc Prat
摘要
Abstract Precipitation of sodium chloride driven by evaporation at the surface of a porous medium is studied from a combination of experiments, continuum simulations, pore network simulations and a simple efflorescence growth model on a lattice. The distribution of ions concentration maxima at the porous medium surface, which are seen as the incipient precipitation spots, is shown to be strongly dependent on the factors affecting the velocity field within the porous medium owing to the significance of advection on ion transport. These factors include the evaporation flux distribution at the surface at Darcy’s scale as well as the scale of surface menisci and the internal disorder of the porous medium, which induce spatial fluctuations in the velocity field. The randomness of the velocity field within the porous medium and at its surface explains the discrete nature of incipient precipitation spots at the surface of a porous medium. Experiments varying the mean size of the beads forming the porous medium lead to the identification of two main types of efflorescence, referred to as crusty and patchy, and the impact of these two types on evaporation is completely different. The crusty efflorescence severely reduces the evaporation rate whereas the patchy efflorescence can enhance the evaporation rate compared with pure water. The crusty–patchy transition is analysed from a simple growth model on a lattice taking into account the porous nature of efflorescence structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI