Time series forecasting for nonlinear and non-stationary processes: a review and comparative study

非线性系统 非线性自回归外生模型 计算机科学 自回归模型 时间序列 先验与后验 领域(数学) 系列(地层学) 状态变量 自回归积分移动平均 计量经济学 人工智能 机器学习 数学 热力学 古生物学 哲学 物理 认识论 量子力学 生物 纯数学
作者
Changqing Cheng,Akkarapol Sa-ngasoongsong,Ömer Faruk Beyca,Trung Le,Hui Yang,Zhenyu Kong,Satish Bukkapatnam
出处
期刊:Iie Transactions [Taylor & Francis]
卷期号:47 (10): 1053-1071 被引量:215
标识
DOI:10.1080/0740817x.2014.999180
摘要

Forecasting the evolution of complex systems is noted as one of the 10 grand challenges of modern science. Time series data from complex systems capture the dynamic behaviors and causalities of the underlying processes and provide a tractable means to predict and monitor system state evolution. However, the nonlinear and non-stationary dynamics of the underlying processes pose a major challenge for accurate forecasting. For most real-world systems, the vector field of state dynamics is a nonlinear function of the state variables; i.e., the relationship connecting intrinsic state variables with their autoregressive terms and exogenous variables is nonlinear. Time series emerging from such complex systems exhibit aperiodic (chaotic) patterns even under steady state. Also, since real-world systems often evolve under transient conditions, the signals obtained therefrom tend to exhibit myriad forms of non-stationarity. Nonetheless, methods reported in the literature focus mostly on forecasting linear and stationary processes. This article presents a review of these advancements in nonlinear and non-stationary time series forecasting models and a comparison of their performances in certain real-world manufacturing and health informatics applications. Conventional approaches do not adequately capture the system evolution (from the standpoint of forecasting accuracy, computational effort, and sensitivity to quantity and quality of a priori information) in these applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DHY完成签到,获得积分10
刚刚
Owen应助oguricap采纳,获得30
刚刚
量子星尘发布了新的文献求助10
1秒前
跳跃的惮完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
研友_Z6G2D8发布了新的文献求助10
5秒前
可靠半青完成签到 ,获得积分10
6秒前
8秒前
dd发布了新的文献求助10
9秒前
9秒前
Research发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
ShikiNatsume完成签到,获得积分10
12秒前
福star高照发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
方波溟发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
victory发布了新的文献求助10
16秒前
18秒前
19秒前
qgf发布了新的文献求助10
19秒前
19秒前
聆(*^_^*)发布了新的文献求助50
19秒前
研友_Z6G2D8完成签到,获得积分10
19秒前
pitto发布了新的文献求助10
20秒前
李健的小迷弟应助Research采纳,获得10
21秒前
TYMX完成签到,获得积分10
21秒前
ST完成签到 ,获得积分10
22秒前
Benhnhk21发布了新的文献求助30
22秒前
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Understanding Jurisprudence: An Introduction to Legal Theory (6th edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4266505
求助须知:如何正确求助?哪些是违规求助? 3798393
关于积分的说明 11906787
捐赠科研通 3444753
什么是DOI,文献DOI怎么找? 1889985
邀请新用户注册赠送积分活动 940927
科研通“疑难数据库(出版商)”最低求助积分说明 845228