Capillary effects during droplet impact on a solid surface

物理 表面张力 流体体积法 接触角 毛细管数 机械 反冲 固体表面 粘度 韦伯数 毛细管作用 材料科学 热力学 流量(数学) 化学物理 湍流 量子力学 雷诺数
作者
Mohammad Passandideh‐Fard,Yuhui Qiao,S. Chandra,J. Mostaghimi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:8 (3): 650-659 被引量:1199
标识
DOI:10.1063/1.868850
摘要

Impact of water droplets on a flat, solid surface was studied using both experiments and numerical simulation. Liquid–solid contact angle was varied in experiments by adding traces of a surfactant to water. Impacting droplets were photographed and liquid–solid contact diameters and contact angles were measured from photographs. A numerical solution of the Navier–Stokes equation using a modified SOLA-VOF method was used to model droplet deformation. Measured values of dynamic contact angles were used as a boundary condition for the numerical model. Impacting droplets spread on the surface until liquid surface tension and viscosity overcame inertial forces, after which they recoiled off the surface. Adding a surfactant did not affect droplet shape during the initial stages of impact, but did increase maximum spread diameter and reduce recoil height. Comparison of computer generated images of impacting droplets with photographs showed that the numerical model modeled droplet shape evolution correctly. Accurate predictions were obtained for droplet contact diameter during spreading and at equilibrium. The model overpredicted droplet contact diameters during recoil. Assuming that dynamic surface tension of surfactant solutions is constant, equaling that of pure water, gave predicted droplet shapes that best agreed with experimental observations. When the contact angle was assumed constant in the model, equal to the measured equilibrium value, predictions were less accurate. A simple analytical model was developed to predict maximum droplet diameter after impact. Model predictions agreed well with experimental measurements reported in the literature. Capillary effects were shown to be negligible during droplet impact when We≫Re1/2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助顺心的飞飞采纳,获得30
刚刚
酸奶泡芙完成签到,获得积分10
1秒前
erin完成签到 ,获得积分10
2秒前
2秒前
彭于晏完成签到,获得积分0
2秒前
难过太君发布了新的文献求助10
3秒前
博qb完成签到,获得积分10
3秒前
3秒前
4秒前
夜雨声烦完成签到,获得积分10
4秒前
雍雍发布了新的文献求助10
5秒前
李健的粉丝团团长应助ysq采纳,获得10
5秒前
惘文完成签到 ,获得积分20
5秒前
5秒前
坚定的诗双完成签到,获得积分10
6秒前
科研通AI5应助song采纳,获得10
6秒前
6秒前
Ava应助现代一曲采纳,获得10
7秒前
7秒前
难过的臻完成签到,获得积分10
7秒前
娃哈哈完成签到,获得积分10
7秒前
加油吧少年完成签到,获得积分10
7秒前
宋词发布了新的文献求助30
8秒前
汪了个汪发布了新的文献求助30
8秒前
8秒前
9秒前
3210592完成签到 ,获得积分10
9秒前
xtinee完成签到,获得积分10
9秒前
Broadway Zhang完成签到,获得积分10
9秒前
yan完成签到,获得积分10
9秒前
阿翼完成签到 ,获得积分10
9秒前
wwss发布了新的文献求助10
10秒前
小李长头发咯完成签到,获得积分10
10秒前
科研通AI5应助guositing采纳,获得10
10秒前
烟花应助呆萌背包采纳,获得10
10秒前
qly发布了新的文献求助10
11秒前
愉快彩虹发布了新的文献求助10
11秒前
momo完成签到,获得积分10
12秒前
zizhuo2完成签到,获得积分10
12秒前
LHTTT完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785078
求助须知:如何正确求助?哪些是违规求助? 3330527
关于积分的说明 10246774
捐赠科研通 3045869
什么是DOI,文献DOI怎么找? 1671749
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759675