Capillary effects during droplet impact on a solid surface

物理 表面张力 流体体积法 接触角 毛细管数 机械 反冲 固体表面 粘度 韦伯数 毛细管作用 材料科学 热力学 流量(数学) 化学物理 湍流 量子力学 雷诺数
作者
Mohammad Passandideh‐Fard,Yuhui Qiao,S. Chandra,J. Mostaghimi
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:8 (3): 650-659 被引量:1199
标识
DOI:10.1063/1.868850
摘要

Impact of water droplets on a flat, solid surface was studied using both experiments and numerical simulation. Liquid–solid contact angle was varied in experiments by adding traces of a surfactant to water. Impacting droplets were photographed and liquid–solid contact diameters and contact angles were measured from photographs. A numerical solution of the Navier–Stokes equation using a modified SOLA-VOF method was used to model droplet deformation. Measured values of dynamic contact angles were used as a boundary condition for the numerical model. Impacting droplets spread on the surface until liquid surface tension and viscosity overcame inertial forces, after which they recoiled off the surface. Adding a surfactant did not affect droplet shape during the initial stages of impact, but did increase maximum spread diameter and reduce recoil height. Comparison of computer generated images of impacting droplets with photographs showed that the numerical model modeled droplet shape evolution correctly. Accurate predictions were obtained for droplet contact diameter during spreading and at equilibrium. The model overpredicted droplet contact diameters during recoil. Assuming that dynamic surface tension of surfactant solutions is constant, equaling that of pure water, gave predicted droplet shapes that best agreed with experimental observations. When the contact angle was assumed constant in the model, equal to the measured equilibrium value, predictions were less accurate. A simple analytical model was developed to predict maximum droplet diameter after impact. Model predictions agreed well with experimental measurements reported in the literature. Capillary effects were shown to be negligible during droplet impact when We≫Re1/2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
老陈发布了新的文献求助10
1秒前
微调发布了新的文献求助10
2秒前
2秒前
2秒前
haowu发布了新的文献求助10
2秒前
左一发布了新的文献求助10
2秒前
酷酷映冬发布了新的文献求助10
3秒前
3秒前
163发布了新的文献求助10
4秒前
5秒前
风清扬发布了新的文献求助10
5秒前
科研通AI5应助wbc_wbc采纳,获得10
7秒前
zmmm发布了新的文献求助10
7秒前
热心市民完成签到 ,获得积分10
7秒前
8秒前
9秒前
10秒前
dingqi发布了新的文献求助10
11秒前
John完成签到 ,获得积分10
15秒前
15秒前
现代的天与完成签到 ,获得积分10
15秒前
天天快乐应助163采纳,获得10
15秒前
昏睡的洋葱完成签到,获得积分20
16秒前
16秒前
飲啖茶食個包应助优秀沛春采纳,获得200
17秒前
20秒前
wbc_wbc发布了新的文献求助10
21秒前
21秒前
梁小氓完成签到 ,获得积分10
23秒前
24秒前
孤独天薇发布了新的文献求助10
24秒前
24秒前
hong发布了新的文献求助10
26秒前
Hello应助LIUjun采纳,获得10
27秒前
俊秀的香氛完成签到,获得积分10
28秒前
wanci应助小向采纳,获得10
28秒前
guandada完成签到,获得积分10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
Византийско-аланские отно- шения (VI–XII вв.) 500
Mechanics of Composite Strengthening 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4175859
求助须知:如何正确求助?哪些是违规求助? 3711116
关于积分的说明 11703907
捐赠科研通 3394211
什么是DOI,文献DOI怎么找? 1862286
邀请新用户注册赠送积分活动 921099
科研通“疑难数据库(出版商)”最低求助积分说明 833007