数学
计数过程
估计员
协变量
统计
蒙特卡罗方法
加速失效时间模型
应用数学
高斯过程
秩(图论)
高斯分布
组合数学
量子力学
物理
作者
D. Y. Lin,L. J. Wei,Zhiliang Ying
出处
期刊:Biometrika
[Oxford University Press]
日期:1998-09-01
卷期号:85 (3): 605-618
被引量:175
标识
DOI:10.1093/biomet/85.3.605
摘要
We present a natural extension of the conventional accelerated failure time model for survival data to formulate the effects of covariates on the mean function of the counting process for recurrent events. A class of consistent and asymptotically normal rank estimators is developed for estimating the regression parameters of the proposed model. In addition, a Nelson-Aalen-type estimator for the mean function of the counting process is constructed, which is consistent and, properly normalised, converges weakly to a zeromean Gaussian process. We assess the finite-sample properties of the proposed estimators and the associated inference procedures through Monte Carlo simulation and provide an application to a well-known bladder cancer study.
科研通智能强力驱动
Strongly Powered by AbleSci AI