Application of Machine Learning Algorithms to Predict Acute Kidney Injury in Elderly Orthopedic Postoperative Patients

医学 列线图 急性肾损伤 逻辑回归 接收机工作特性 布里氏评分 骨科手术 回顾性队列研究 算法 队列 机器学习 内科学 急诊医学 外科 计算机科学
作者
Qiuchong Chen,Yixue Zhang,Mengjun Zhang,Ziying Li,Jindong Liu
出处
期刊:Clinical Interventions in Aging [Dove Medical Press]
卷期号:Volume 17: 317-330 被引量:13
标识
DOI:10.2147/cia.s349978
摘要

There has been a worldwide increment in acute kidney injury (AKI) incidence among elderly orthopedic operative patients. The AKI prediction model provides patients' early detection a possibility at risk of AKI; most of the AKI prediction models derive, however, from the cardiothoracic operation. The purpose of this study is to predict the risk of AKI in elderly patients after orthopedic surgery based on machine learning algorithm models.We organized a retrospective study being comprised of 1000 patients with postoperative AKI undergoing orthopedic surgery from September 2016, to June, 2021. They were divided into training (80%;n=799) and test (20%;n=201) sets.We utilized nine machine learning (ML) algorithms and used intraoperative information and preoperative clinical features to acquire models to predict AKI. The performance of the model was evaluated according to the area under the receiver operating characteristic (AUC), sensitivity, specificity and accuracy. Select the optimal model and establish the nomogram to make the prediction model visualization. The concordance statistic (C-statistic) and calibration curve were used to discriminate and calibrate the nomogram respectively.In predicting AKI, nine ML algorithms posted AUC of 0.656-1.000 in the training cohort, with the randomforest standing out and AUC of 0.674-0.821 in the test cohort, with the logistic regression model standing out. Thus, we applied the logistic regression model to establish nomogram. The nomogram was comprised of ten variables: age, body mass index, American Society of Anesthesiologists, hypoproteinemia, hypertension, diabetes, anemia, duration of low mean arterial pressure, mean arterial pressure, transfusion.The calibration curves showed good agreement between prediction and observation in both the training and test sets.By including intraoperative and preoperative risk factors, ML algorithm can predict AKI and logistic regression model performing the best. Our prediction model and nomogram that are based on this ML algorithm can help lead decision-making for strategies to inhibit AKI over the perioperative duration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文麦片完成签到 ,获得积分10
2秒前
龙骑士25发布了新的文献求助10
3秒前
栗子完成签到,获得积分10
3秒前
认真果汁发布了新的文献求助10
6秒前
CQ完成签到 ,获得积分10
7秒前
ma化疼没木完成签到,获得积分10
8秒前
11秒前
超帅曼柔完成签到,获得积分10
12秒前
14秒前
动漫大师发布了新的文献求助10
17秒前
17秒前
chuanzhi完成签到,获得积分10
18秒前
19秒前
21秒前
23秒前
聪明静柏完成签到 ,获得积分10
23秒前
23秒前
独特大米发布了新的文献求助10
23秒前
27秒前
棒棒睡不着(科研版)完成签到,获得积分10
27秒前
林蓉发布了新的文献求助10
27秒前
孙佳琦发布了新的文献求助10
28秒前
Micheal完成签到,获得积分10
28秒前
新海天发布了新的文献求助60
29秒前
29秒前
善学以致用应助Pan采纳,获得10
31秒前
科研通AI5应助独特大米采纳,获得10
31秒前
小鹿完成签到 ,获得积分10
33秒前
35秒前
35秒前
Jasper应助陈瑞娟采纳,获得10
36秒前
36秒前
ChandlerZB完成签到,获得积分10
36秒前
袁大头发布了新的文献求助10
37秒前
jenningseastera应助郝亚楠采纳,获得10
37秒前
我有一只小毛驴从来也不骑完成签到,获得积分10
38秒前
孙浩宸完成签到,获得积分10
38秒前
39秒前
Ava应助科研通管家采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236658
捐赠科研通 3043569
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119