A Novel Approach for Real-Time Quality Monitoring in Machining of Aerospace Alloy through Acoustic Emission Signal Transformation for DNN

声发射 卷积神经网络 计算机科学 机械加工 人工神经网络 模式识别(心理学) 特征提取 小波 人工智能 材料科学 复合材料 冶金
作者
David Adeniji,Kyle Oligee,Julius Schoop
出处
期刊:Journal of manufacturing and materials processing [Multidisciplinary Digital Publishing Institute]
卷期号:6 (1): 18-18 被引量:14
标识
DOI:10.3390/jmmp6010018
摘要

Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which is retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with a propensity to rapid crack propagation, has limited the application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower the useful (fatigue) life of γ-TiAl components, making the workpiece surface’s quality from finish machining a critical component to product quality and performance. To address this issue and enable more widespread use of γ-TiAl, this research aims to develop a real-time non-destructive evaluation (NDE) quality monitoring technique based on acoustic emission (AE) signals, wavelet transform, and deep neural networks (DNN). Previous efforts have opted for traditional approaches to AE signal analysis, using statistical feature extraction and classification, which face challenges such as the extraction of good/relevant features and low classification accuracy. Hence, this work proposes a novel AI-enabled method that uses a convolutional neural network (CNN) to extract rich and relevant features from a two-dimensional image representation of 1D time-domain AE signals (known as scalograms), subsequently classifying the AE signature based on pedigreed experimental data and finally predicting the process-induced surface quality. The results of the present work show good classification accuracy of 80.83% using scalogram images, in-situ experimental data, and a VGG-19 pre-trained neural network, establishing the significant potential for real-time quality monitoring in manufacturing processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北笙完成签到 ,获得积分10
刚刚
Lucky.完成签到 ,获得积分0
1秒前
Ashley完成签到 ,获得积分10
1秒前
心想事成完成签到 ,获得积分10
3秒前
lsy完成签到 ,获得积分10
4秒前
自然函完成签到 ,获得积分10
4秒前
梅特卡夫完成签到,获得积分10
5秒前
李凯尔完成签到 ,获得积分10
6秒前
影像大侠完成签到,获得积分10
6秒前
Ava应助maoxinnan采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
上官若男应助洁净斑马采纳,获得10
8秒前
9秒前
海森堡完成签到,获得积分10
9秒前
清风完成签到 ,获得积分10
10秒前
13988548568完成签到,获得积分10
12秒前
EnJingYang完成签到,获得积分10
14秒前
将看看发布了新的文献求助10
14秒前
岁月如歌完成签到 ,获得积分0
14秒前
胖小羊完成签到 ,获得积分10
14秒前
Galri完成签到 ,获得积分10
14秒前
HLT完成签到 ,获得积分10
16秒前
17秒前
18秒前
HuLL完成签到 ,获得积分10
21秒前
maoxinnan发布了新的文献求助10
22秒前
Alex完成签到,获得积分10
22秒前
洁净斑马发布了新的文献求助10
22秒前
飘逸的苡完成签到 ,获得积分10
22秒前
无私的芹应助柠檬加冰采纳,获得10
23秒前
无私的芹应助柠檬加冰采纳,获得10
23秒前
无私的芹应助柠檬加冰采纳,获得10
23秒前
iNk应助柠檬加冰采纳,获得10
23秒前
量子星尘发布了新的文献求助10
24秒前
宋宋宋宋完成签到,获得积分10
25秒前
小心薛了你完成签到,获得积分10
26秒前
CDI和LIB完成签到,获得积分10
32秒前
开心的人杰完成签到,获得积分10
32秒前
无私的芹应助maoxinnan采纳,获得10
32秒前
levoglucosan完成签到,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015