An evolutionary optimization algorithm for proton arc therapy

计算机科学 平面图(考古学) 算法 进化算法 发电机(电路理论) 质量(理念) 试验计划 放射治疗计划 人工智能 模拟 数学 物理 生物 统计 医学 放射治疗 内科学 古生物学 功率(物理) 威布尔分布 量子力学
作者
Lewei Zhao,Gang Liu,Xiaoqiang Li,Xuanfeng Ding
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (16): 16NT01-16NT01 被引量:17
标识
DOI:10.1088/1361-6560/ac8411
摘要

Objective. Proton arc plan normally contains thousands of spot numbers and hundreds of energy layers. A recent study reported that the beam delivery time (BDT) is proportional to the spot numbers. Thus, it is critical to find an optimal plan with a fast delivery speed while maintaining a good plan quality. Thus, we developed a novel evolutionary algorithm to directly search for the optimal spot sparsity solution to balance plan quality and BDT.Approach. The planning platform included a plan quality objective, a generator, and a selector. The generator is based on trust-region-reflective solver. A selector was designed to filter or add the spot according to the expected spot number, based on the user's input of BDT. The generator and selector are used alternatively to optimize a spot sparsity solution. Three clinical cases' CT and structure datasets, e.g. brain, lung, and liver cancer, were used for testing purposes. A series of user-defined BDTs from 15 to 250 s were used as direct inputs. The relationship between the plan's cost function value and BDT was evaluated in these three cases.Main results. The evolutionary algorithm could optimize a proton arc plan based on clinical user input BDT directly. The plan quality remains optimal in the brain, lung, and liver cases until the BDT was shorter than 25 s, 50 s and 100 s, respectively. The plan quality degraded as the input delivery time became too short, indicating that the plan lacked enough spot or degree of freedom.Significance. This is the first proton arc planning framework to directly optimize plan quality with the BDT as an input for the new generation of proton therapy systems. This work paved the roadmap for implementing such new technology in a routine clinic and provided a planning platform to explore the trade-off between the BDT and plan quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天才小仙女完成签到,获得积分10
刚刚
1秒前
1秒前
KhalilHao完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助LOU采纳,获得10
2秒前
小二郎应助perdgs采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
5秒前
沉默是金发布了新的文献求助30
5秒前
5秒前
6秒前
无花果应助叶子采纳,获得10
6秒前
刘锦发布了新的文献求助10
6秒前
lyon发布了新的文献求助10
8秒前
SciGPT应助cece采纳,获得10
8秒前
潜艇白羊发布了新的文献求助10
9秒前
9秒前
perdgs发布了新的文献求助10
10秒前
10秒前
11秒前
坤坤蹦蹦跳跳完成签到,获得积分10
11秒前
甜蜜海蓝发布了新的文献求助30
11秒前
11秒前
12秒前
12秒前
Moran发布了新的文献求助10
14秒前
叶y发布了新的文献求助10
14秒前
14秒前
听话的采蓝完成签到,获得积分10
15秒前
豆豆完成签到 ,获得积分10
15秒前
西游发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
zz发布了新的文献求助10
16秒前
钮傲白发布了新的文献求助10
16秒前
wuhanfei发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002