Bandwidth-enhanced magnetoelectric antenna based on composite bulk acoustic resonators

谐振器 带宽(计算) 材料科学 宽带 光电子学 声学 物理 计算机科学 光学 电信
作者
Xiaofan Yun,Wenkui Lin,Rui Hu,Yizhang Liu,Xiaoyi Wang,Guohao Yu,Zhongming Zeng,Xinping Zhang,Baoshun Zhang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:121 (3) 被引量:22
标识
DOI:10.1063/5.0098323
摘要

A bulk acoustic wave (BAW) driven magnetoelectric (ME) antenna has narrow operating bandwidth due to its high Q factor, and an effective mechanism for bandwidth enhancement is yet to be explored. This article presents a bandwidth-enhanced magnetoelectric (BWE-ME) antenna made of a Mo/AlN/FeGa sandwich stack, which is composed of three different resonant regions. These resonant regions in the discrete device can be equated as a parallel connection of dual high-overtone bulk acoustic resonators (HBARs) and single film bulk acoustic resonators (FBARs) with tiny frequency shift among the three resonators resulting in bandwidth broadening of the BWE-ME antenna. The resonant mode and return loss curves (S11) are simulated in a two-dimensional finite element method and fitted with the Mason equivalent circuit model. The frequency domain analysis shows that the magnetic flux density bandwidth generated by the multi-resonant mode interaction is 18 MHz, which matches the bandwidth of the measured reference gain S21 curve of the BWE-ME antenna, and the far-field radiated power characterization also shows the corresponding effective bandwidth distributed. The fabricated microelectromechanical systems antenna achieves a fractional bandwidth of 2.7% while maintaining the advantage of small size (0.49 mm2). Discrete composite BAW resonators that effectively combine the multi-resonant regions of HBARs and FBARs have the potential to realize compact and broadband BAW-ME antennas in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DT发布了新的文献求助10
1秒前
2秒前
4秒前
DoLaso完成签到,获得积分10
4秒前
4秒前
6秒前
平平平平完成签到 ,获得积分10
7秒前
学术通zzz发布了新的文献求助10
11秒前
zxh656691发布了新的文献求助10
13秒前
朴素的SCI缔造者完成签到,获得积分10
14秒前
chonger完成签到,获得积分10
16秒前
烟花应助xzj采纳,获得10
21秒前
22秒前
TK发布了新的文献求助10
24秒前
25秒前
好好搞科研完成签到 ,获得积分10
26秒前
Murphy发布了新的文献求助10
26秒前
27秒前
29秒前
万能图书馆应助今夕何夕采纳,获得10
30秒前
稀饭发布了新的文献求助10
31秒前
Mireia完成签到,获得积分10
32秒前
32秒前
35秒前
大脸猫完成签到 ,获得积分10
37秒前
DT完成签到,获得积分10
37秒前
38秒前
xzj发布了新的文献求助10
38秒前
科研通AI2S应助谢富杰采纳,获得10
39秒前
今夕何夕完成签到,获得积分10
40秒前
fuiee发布了新的文献求助10
44秒前
丑123完成签到,获得积分20
44秒前
LIVE完成签到,获得积分10
45秒前
丑123发布了新的文献求助10
48秒前
49秒前
fuiee完成签到,获得积分10
50秒前
52秒前
xzj完成签到,获得积分10
52秒前
zrs发布了新的文献求助10
56秒前
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304