Machine Learning Risk Prediction Model of 90-day Mortality After Gastrectomy for Cancer

医学 队列 逻辑回归 胃切除术 癌症 置信区间 内科学 癌症登记处 队列研究 外科
作者
Manuel Pera,Joan Gibert,Marta Gimeno,Elisenda Garsot,Emma Eizaguirre,Mònica Miró,Sandra Castro,Coro Miranda,Lorena Reka,Saioa Leturio,Marta González,Clara Codony,Yanina Gobbini,Alexis Luna,Sonia Fernández–Ananín,Aingeru Sarriugarte Lasarte,Carles Olona,Joaquín Rodríguez-Santiago,Javier Osorio,Luís Grande
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:276 (5): 776-783 被引量:22
标识
DOI:10.1097/sla.0000000000005616
摘要

Objective: To develop and validate a risk prediction model of 90-day mortality (90DM) using machine learning in a large multicenter cohort of patients undergoing gastric cancer resection with curative intent. Background: The 90DM rate after gastrectomy for cancer is a quality of care indicator in surgical oncology. There is a lack of well-validated instruments for personalized prognosis of gastric cancer. Methods: Consecutive patients with gastric adenocarcinoma who underwent potentially curative gastrectomy between 2014 and 2021 registered in the Spanish EURECCA Esophagogastric Cancer Registry database were included. The 90DM for all causes was the study outcome. Preoperative clinical characteristics were tested in four 90DM predictive models: Cross Validated Elastic regularized logistic regression method (cv-Enet), boosting linear regression (glmboost), random forest, and an ensemble model. Performance was evaluated using the area under the curve by 10-fold cross-validation. Results: A total of 3182 and 260 patients from 39 institutions in 6 regions were included in the development and validation cohorts, respectively. The 90DM rate was 5.6% and 6.2%, respectively. The random forest model showed the best discrimination capacity with a validated area under the curve of 0.844 [95% confidence interval (CI): 0.841–0.848] as compared with cv-Enet (0.796, 95% CI: 0.784–0.808), glmboost (0.797, 95% CI: 0.785–0.809), and ensemble model (0.847, 95% CI: 0.836–0.858) in the development cohort. Similar discriminative capacity was observed in the validation cohort. Conclusions: A robust clinical model for predicting the risk of 90DM after surgery of gastric cancer was developed. Its use may aid patients and surgeons in making informed decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小瞎子_Zora完成签到 ,获得积分10
3秒前
4秒前
晶晶完成签到 ,获得积分10
4秒前
JamesPei应助博修采纳,获得10
7秒前
科研通AI5应助zhang采纳,获得10
8秒前
shyの煜完成签到 ,获得积分10
9秒前
MAN发布了新的文献求助10
9秒前
科研通AI5应助dongli6536采纳,获得10
12秒前
Ava应助hjjj采纳,获得10
12秒前
脑洞疼应助奔腾小马采纳,获得10
12秒前
英俊的铭应助孤独士晋采纳,获得30
13秒前
mrwang完成签到 ,获得积分10
16秒前
1111完成签到,获得积分10
16秒前
21秒前
majm完成签到 ,获得积分10
22秒前
是我呀小夏完成签到 ,获得积分10
22秒前
hjjj发布了新的文献求助10
26秒前
26秒前
28秒前
MAN完成签到,获得积分10
28秒前
29秒前
博修发布了新的文献求助10
30秒前
31秒前
gab发布了新的文献求助10
32秒前
ddddansu发布了新的文献求助10
33秒前
36秒前
gab完成签到,获得积分10
36秒前
41秒前
42秒前
wanci应助达不溜qp采纳,获得10
42秒前
ddddansu完成签到,获得积分20
45秒前
dwalll发布了新的文献求助10
45秒前
47秒前
111发布了新的文献求助10
48秒前
49秒前
51秒前
乾坤完成签到,获得积分10
52秒前
tdtk发布了新的文献求助10
52秒前
Christina完成签到,获得积分10
53秒前
达不溜qp发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778025
求助须知:如何正确求助?哪些是违规求助? 3323679
关于积分的说明 10215432
捐赠科研通 3038897
什么是DOI,文献DOI怎么找? 1667705
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339