Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network

计算机科学 联营 人工智能 模式识别(心理学) 功能磁共振成像 分类器(UML) 图形 甲骨文公司 数据挖掘 机器学习 理论计算机科学 生物 软件工程 神经科学
作者
Xuegang Song,Feng Zhou,Alejandro F. Frangi,Jiuwen Cao,Xiaohua Xiao,Yi Lei,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 354-367 被引量:69
标识
DOI:10.1109/tmi.2022.3187141
摘要

For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao_yiyi应助鑫搭采纳,获得20
1秒前
1秒前
BUCI发布了新的文献求助10
1秒前
小蘑菇应助哈哈哈哈哈采纳,获得10
2秒前
2秒前
Amo应助SU采纳,获得10
2秒前
健壮的绿凝完成签到,获得积分10
3秒前
许金钗完成签到,获得积分10
4秒前
hahhhah完成签到 ,获得积分10
4秒前
5秒前
王明新完成签到,获得积分10
6秒前
msli发布了新的文献求助10
6秒前
7秒前
海天使完成签到,获得积分10
7秒前
汉堡包应助赵鑫雅采纳,获得10
8秒前
鹿冶完成签到 ,获得积分10
8秒前
9秒前
9秒前
咖啡先生发布了新的文献求助10
9秒前
鑫搭完成签到,获得积分10
10秒前
11秒前
皮皮鲁完成签到,获得积分10
13秒前
13秒前
鹿子完成签到 ,获得积分10
14秒前
风趣过客完成签到,获得积分10
14秒前
1687发布了新的文献求助10
15秒前
神凰完成签到,获得积分10
16秒前
17秒前
18秒前
炙热的夜雪完成签到 ,获得积分10
18秒前
刻苦的士萧完成签到,获得积分10
18秒前
赵鑫雅发布了新的文献求助10
21秒前
Fernweh发布了新的文献求助10
22秒前
852应助Cmy采纳,获得10
22秒前
24秒前
巴乔完成签到,获得积分10
25秒前
内向莛发布了新的文献求助10
25秒前
今后应助海岢采纳,获得10
26秒前
搜集达人应助Fernweh采纳,获得10
29秒前
w婷完成签到 ,获得积分10
30秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976