已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network

计算机科学 联营 人工智能 模式识别(心理学) 功能磁共振成像 分类器(UML) 图形 甲骨文公司 数据挖掘 机器学习 理论计算机科学 生物 软件工程 神经科学
作者
Xuegang Song,Feng Zhou,Alejandro F. Frangi,Jiuwen Cao,Xiaohua Xiao,Yi Lei,Tianfu Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 354-367 被引量:71
标识
DOI:10.1109/tmi.2022.3187141
摘要

For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的迎天完成签到,获得积分10
3秒前
aafrr完成签到 ,获得积分10
5秒前
11秒前
14秒前
xyzlancet发布了新的文献求助10
16秒前
tudou关注了科研通微信公众号
16秒前
sherlym发布了新的文献求助10
17秒前
俭朴的跳跳糖完成签到 ,获得积分10
17秒前
18秒前
20秒前
puhong zhang发布了新的文献求助10
21秒前
爆米花应助Hemingwayway采纳,获得10
22秒前
小伙子完成签到,获得积分0
22秒前
25秒前
timo发布了新的文献求助10
28秒前
28秒前
31秒前
修管子完成签到 ,获得积分0
31秒前
Hemingwayway发布了新的文献求助10
31秒前
佑安完成签到,获得积分10
33秒前
小炮仗完成签到 ,获得积分10
34秒前
sherlym完成签到,获得积分10
35秒前
Hemingwayway完成签到,获得积分10
36秒前
37秒前
37秒前
41秒前
simpleton发布了新的文献求助10
41秒前
tudou发布了新的文献求助10
41秒前
德鲁大叔发布了新的文献求助30
42秒前
rynchee完成签到 ,获得积分0
43秒前
45秒前
CipherSage应助simpleton采纳,获得10
47秒前
liang发布了新的文献求助10
47秒前
fishmire完成签到 ,获得积分10
50秒前
51秒前
52秒前
55秒前
Qq完成签到,获得积分10
57秒前
57秒前
59秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3921971
求助须知:如何正确求助?哪些是违规求助? 3466770
关于积分的说明 10944871
捐赠科研通 3195639
什么是DOI,文献DOI怎么找? 1765730
邀请新用户注册赠送积分活动 855677
科研通“疑难数据库(出版商)”最低求助积分说明 795039