Multi-modality connectome-based predictive modeling of individualized compulsions in obsessive-compulsive disorder

连接体 神经影像学 心理学 默认模式网络 神经科学 磁共振弥散成像 静息状态功能磁共振成像 功能磁共振成像 前额叶皮质 部分各向异性 认知 功能连接 磁共振成像 医学 放射科
作者
Chunyan Zhu,Zhao Fu,Lu Chen,Fengqiong Yu,Junfeng Zhang,Yuxuan Zhang,Hui Ai,Lu Chen,Pengjiao Sui,Qianqian Wu,Yudan Luo,Pengfei Xu,Kai Wang
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:311: 595-603 被引量:7
标识
DOI:10.1016/j.jad.2022.05.120
摘要

While previous neuroimaging studies are mainly focused on dichotomous classification of obsessive-compulsive disorder (OCD) from controls, predicting continuous severity of specific symptom is also pivotal to clinical diagnosis and treatment. We applied a machine-learning approach, connectome-based predictive modeling, on functional and structural brain networks constructed from resting-state functional magnetic resonance imaging and diffusion tensor imaging data to decode compulsions and obsessions of fifty-four patients with OCD. We successfully predicted individualized compulsions with a positive model of structural brain network and with a negative model of functional brain network. The structural predictive brain network comprises the motor cortex, cerebellum and limbic lobe, which are involved in basic motor control, motor execution and emotion processing, respectively. The functional predictive brain network is composed by the prefrontal and limbic systems which are related to cognitive and affective control. Computational lesion analysis shows that functional connectivity among the salience network (SN), the frontal parietal network and the default mode network, as well as structural connectivity within the SN are vital in the individualized prediction of compulsions in OCD. There was no external validation of large samples to test the robustness of our predictive model. These findings provide the first evidence for the predictive role of the triple network model in individualized compulsions and have important implications in diagnosis, prognosis and treatment of patients with OCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学无止境发布了新的文献求助10
刚刚
hahaha发布了新的文献求助10
刚刚
刚刚
刚刚
棠棠完成签到,获得积分10
1秒前
顺利墨镜发布了新的文献求助10
1秒前
clairr完成签到,获得积分10
2秒前
似乎一场梦完成签到 ,获得积分10
2秒前
叶世玉发布了新的文献求助10
2秒前
甜甜诗筠完成签到,获得积分10
2秒前
3秒前
3秒前
叮叮猫关注了科研通微信公众号
3秒前
sybil发布了新的文献求助10
4秒前
4秒前
烟花应助666888采纳,获得10
4秒前
4秒前
科研通AI5应助读书的时候采纳,获得10
5秒前
bofu发布了新的文献求助10
5秒前
lindc完成签到,获得积分10
5秒前
酷酷纸飞机完成签到,获得积分10
5秒前
6秒前
大力哈密瓜完成签到,获得积分10
6秒前
宋成为完成签到,获得积分10
6秒前
成7完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
蟹黄堡发布了新的文献求助10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
9秒前
SYLH应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得20
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4033438
求助须知:如何正确求助?哪些是违规求助? 3571972
关于积分的说明 11365764
捐赠科研通 3302169
什么是DOI,文献DOI怎么找? 1817979
邀请新用户注册赠送积分活动 891673
科研通“疑难数据库(出版商)”最低求助积分说明 814446