Differentiation of eosinophilic and non-eosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning

分割 可解释性 医学 人工智能 鼻息肉 接收机工作特性 嗜酸性 放射科 模式识别(心理学) 核医学 计算机科学 病理 内科学
作者
Hong‐Li Hua,Song Li,Yu Xu,Shiming Chen,Yonggang Kong,Rui Yang,Yuqin Deng,Zezhang Tao
出处
期刊:Authorea - Authorea
标识
DOI:10.22541/au.164972524.42674152/v1
摘要

Objective: This study aimed to develop deep learning (DL) models for differentiating between eosinophilic chronic rhinosinusitis (ECRS) and non-eosinophilic chronic rhinosinusitis (NECRS) on preoperative computed tomography (CT). Methods: A total of 878 chronic rhinosinusitis (CRS) patients undergoing nasal endoscopic surgery were included. Axial spiral CT images were pre-processed and used to build the dataset. Two semantic segmentation models based on U-net and Deeplabv3 were trained to segment sinus area in CT images. All patient images were segmented using the better-performing segmentation model and used for training and validation of the transferred efficientnet_b0, resnet50, inception_resnet_v2, and Xception neural networks. Additionally, we evaluated the performances of the models trained using each image and each patient as a unit. The precision of each model was assessed based on the receiver operating characteristic curve. Further, we analyzed the confusion matrix, accuracy, and interpretability of each model. Results: The Dice coefficients of U-net and Deeplabv3 were 0.953 and 0.961, respectively. The average area under the curve and mean accuracy values of the four networks were 0.848 and 0.762 for models trained using a single image as a unit, while the corresponding values for models trained using each patient as a unit were 0.853 and 0.893, respectively. The generated Grad-Cams showed good interpretability. Conclusion: Combining semantic segmentation with classification networks could effectively distinguish between patients with ECRS and NECRS based on preoperative sinus CT images. Furthermore, labeling each patient to build a dataset for classification may be more reliable than labeling each medical image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
充电宝应助听听采纳,获得10
刚刚
小杨同学完成签到,获得积分10
刚刚
爆米花应助华北走地鸡采纳,获得10
1秒前
阿龙发布了新的文献求助10
1秒前
友好飞松完成签到,获得积分10
1秒前
qyn完成签到,获得积分20
2秒前
2秒前
2秒前
saajim完成签到,获得积分10
2秒前
bear应助yong采纳,获得15
2秒前
卡卡咧咧发布了新的文献求助10
2秒前
华仔应助kk采纳,获得10
3秒前
4秒前
宁小满完成签到,获得积分10
4秒前
RapGod完成签到,获得积分10
4秒前
4秒前
隐形曼青应助JoeJoe采纳,获得30
5秒前
在水一方应助shuyu采纳,获得10
5秒前
芷江景发布了新的文献求助10
6秒前
希望天下0贩的0应助jinan采纳,获得10
6秒前
6秒前
周沛沛发布了新的文献求助10
6秒前
6秒前
科研通AI5应助贲半梦采纳,获得10
6秒前
陈乔乔完成签到,获得积分10
7秒前
坦率道之完成签到,获得积分20
7秒前
科研宝完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
张奶昔完成签到,获得积分10
8秒前
10秒前
11秒前
lin发布了新的文献求助10
11秒前
11秒前
坦率道之发布了新的文献求助10
11秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487