癌症研究
肿瘤微环境
免疫系统
免疫检查点
免疫疗法
胰腺癌
上皮-间质转换
癌症
转移
医学
生物
免疫学
内科学
作者
Yang Ge,Heshu Liu,Yuanyuan Zhang,Jian Liu,Rui Yan,Zeru Xiao,Xiaona Fan,Xuying Huang,Guangyu An
标识
DOI:10.1016/j.tranon.2021.101317
摘要
Immunotherapy has recently become a promising cancer therapy with extensive applications of immune checkpoint inhibitors (ICIs). However, pancreatic ductal adenocarcinoma (PDAC) appears to be unresponsive to immunotherapy due to the immunosuppressive microenvironment. Recent studies showed that cancer stem cell marker DCLK1 promoted the initiation and development of PDAC. Nevertheless, the mechanism driving this process remains unclear. Here, by performing gain-of-function investigations in PDAC cell lines, we demonstrate that both DCLK1 long (DCLK1-iso1, DCLK1-AS) and short (DCLK1-iso4, DCLK1-BL) isoforms can efficiently activate EMT leading to tumor migration and invasion. Consistent with experiments in vitro, bioinformatic analysis demonstrates that DCLK1 may act as a driver of EMT activation in PDAC. Further analysis showed that EMT was associated with an immunosuppressive microenvironment, which includes more immunosuppressive cells and chemokines, and patients with a higher EMT score were less sensitive to immune checkpoint inhibitors according to the TIDE (Tumor Immune Dysfunction and Exclusion) algorithm. Multiplexed immunofluorescence results demonstrated the close correlation between DCLK1, EMT and immunosuppression in PDAC patients. The findings were further confirmed in vivo reflected by decreased CD4+, CD8+ T cells and increased M2 macrophages as well as E-cad loss in DCLK1-overexpressing subcutaneous tumors. Importantly, the highly-specific DCLK1 inhibitor (DCLK1-IN-1) was able to effectively block EMT process and restore T-cell activity. Altogether, our data demonstrate that DCLK1 is strongly associated with tumor immune escape in PDAC and inhibiting DCLK1 kinase activity may be a promising therapeutic modality.
科研通智能强力驱动
Strongly Powered by AbleSci AI