Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm

特征选择 计算机科学 遗传算法 算法 熵(时间箭头) 人工智能 理论(学习稳定性) 机器学习 特征(语言学) 堆积 选择(遗传算法) 材料科学 化学 热力学 语言学 哲学 物理 有机化学
作者
Shuai Li,Shu Li,Dong-Rong Liu,Rui Zou,Zhiyuan Yang
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:205: 111185-111185 被引量:72
标识
DOI:10.1016/j.commatsci.2022.111185
摘要

With the coming of the age of artificial intelligence and big data, machine learning (ML) has been showing powerful potentials for properties prediction of materials. For achieving satisfying prediction performance, rational feature selection plays a key role along with a suitable ML model itself. In the present work, the traditional genetic algorithm (GA) has been further improved to serve as a feature selection method for the hardness prediction problem of high entropy alloys (HEAs). The concepts of feature importance and gene manipulation were introduced into the improved GA to make it more comprehensible. Comparative analysis demonstrated that the improved GA is superior to the traditional GA in the aspects of accuracy, stability and efficiency obviously. A comparison with other typical feature selection methods was also made. In addition, ML model selection was discussed with the composition feature or the optimal physical feature combination selected by the improved GA. Finally, in order to elevate the prediction ability of ML model, the stacking method as an ensemble learning strategy was proposed in Al-Co-Cr-Cu-Fe-Ni HEAs hardness prediction. It was shown that the prediction errors are successfully lowered. This ML framework could be regarded as a method with general applicability to select suitable ML model and material descriptors, for designing various materials with excellent properties and complex composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangq完成签到 ,获得积分10
1秒前
3秒前
嘻嘻完成签到,获得积分10
3秒前
爱笑的蘑菇完成签到,获得积分10
3秒前
bbible完成签到,获得积分10
4秒前
8秒前
巧克力布朗尼完成签到 ,获得积分10
8秒前
缥缈的凡梦完成签到,获得积分10
9秒前
笑一笑发布了新的文献求助10
9秒前
10秒前
Hello应助科研通管家采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
球球了应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
zeng完成签到,获得积分10
14秒前
852应助张不大采纳,获得10
16秒前
chaochao发布了新的文献求助10
18秒前
yaoli0823发布了新的文献求助30
18秒前
无花果应助确幸采纳,获得10
20秒前
哈哈哈发布了新的文献求助10
20秒前
共享精神应助正在进行时采纳,获得10
20秒前
20秒前
深情安青应助Sean采纳,获得10
22秒前
23秒前
zeee完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403975
求助须知:如何正确求助?哪些是违规求助? 3890286
关于积分的说明 12107394
捐赠科研通 3535070
什么是DOI,文献DOI怎么找? 1939681
邀请新用户注册赠送积分活动 980593
科研通“疑难数据库(出版商)”最低求助积分说明 877350