亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PathAL: An Active Learning Framework for Histopathology Image Analysis

计算机科学 人工智能 卷积神经网络 一般化 集合(抽象数据类型) 样品(材料) 模式识别(心理学) 机器学习 启发式 图像(数学) 注释 人工神经网络 数学 数学分析 化学 色谱法 程序设计语言
作者
Wenyuan Li,Jiayun Li,Zichen Wang,Jennifer Polson,Anthony Sisk,Dipti P. Sajed,William Speier,Corey Arnold
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (5): 1176-1187 被引量:19
标识
DOI:10.1109/tmi.2021.3135002
摘要

Deep neural networks, in particular convolutional networks, have rapidly become a popular choice for analyzing histopathology images. However, training these models relies heavily on a large number of samples manually annotated by experts, which is cumbersome and expensive. In addition, it is difficult to obtain a perfect set of labels due to the variability between expert annotations. This paper presents a novel active learning (AL) framework for histopathology image analysis, named PathAL. To reduce the required number of expert annotations, PathAL selects two groups of unlabeled data in each training iteration: one "informative" sample that requires additional expert annotation, and one "confident predictive" sample that is automatically added to the training set using the model's pseudo-labels. To reduce the impact of the noisy-labeled samples in the training set, PathAL systematically identifies noisy samples and excludes them to improve the generalization of the model. Our model advances the existing AL method for medical image analysis in two ways. First, we present a selection strategy to improve classification performance with fewer manual annotations. Unlike traditional methods focusing only on finding the most uncertain samples with low prediction confidence, we discover a large number of high confidence samples from the unlabeled set and automatically add them for training with assigned pseudo-labels. Second, we design a method to distinguish between noisy samples and hard samples using a heuristic approach. We exclude the noisy samples while preserving the hard samples to improve model performance. Extensive experiments demonstrate that our proposed PathAL framework achieves promising results on a prostate cancer Gleason grading task, obtaining similar performance with 40% fewer annotations compared to the fully supervised learning scenario. An ablation study is provided to analyze the effectiveness of each component in PathAL, and a pathologist reader study is conducted to validate our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
claire发布了新的文献求助30
2秒前
obedVL完成签到,获得积分10
11秒前
25秒前
32秒前
开放的大侠完成签到,获得积分10
43秒前
Ricardo完成签到 ,获得积分10
45秒前
Orange应助陶醉小土豆采纳,获得10
48秒前
李健应助wenbo采纳,获得10
1分钟前
1分钟前
1分钟前
FashionBoy应助柯代卫采纳,获得10
1分钟前
1分钟前
ltt应助oleskarabach采纳,获得10
1分钟前
Kuga应助oleskarabach采纳,获得10
1分钟前
千纸鹤完成签到 ,获得积分10
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
可达鸭发布了新的文献求助10
1分钟前
1分钟前
1分钟前
gaga发布了新的文献求助10
1分钟前
1分钟前
柯代卫发布了新的文献求助10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
axiao完成签到,获得积分10
1分钟前
1分钟前
1分钟前
axiao发布了新的文献求助10
1分钟前
个木发布了新的文献求助10
1分钟前
yolo完成签到,获得积分10
1分钟前
无花果应助个木采纳,获得10
1分钟前
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
积极的尔白完成签到 ,获得积分10
2分钟前
2分钟前
充电宝应助柯代卫采纳,获得10
2分钟前
王老裂完成签到,获得积分10
2分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906824
求助须知:如何正确求助?哪些是违规求助? 3452354
关于积分的说明 10870101
捐赠科研通 3178166
什么是DOI,文献DOI怎么找? 1755805
邀请新用户注册赠送积分活动 849100
科研通“疑难数据库(出版商)”最低求助积分说明 791352