Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 工作(物理) 充电周期 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 机械工程 功率(物理) 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Sang‐Il Kwon
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:435: 134768-134768 被引量:42
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小二郎应助李耀玲采纳,获得10
1秒前
2秒前
上官若男应助嘿嘿采纳,获得10
3秒前
XinG完成签到,获得积分10
4秒前
4秒前
柚子完成签到,获得积分10
5秒前
hyperion发布了新的文献求助10
5秒前
hiha完成签到,获得积分0
5秒前
honda发布了新的文献求助10
5秒前
6秒前
巫马百招完成签到,获得积分10
8秒前
9秒前
honda完成签到,获得积分10
10秒前
10秒前
852应助威武的元彤采纳,获得10
10秒前
11秒前
11秒前
11秒前
慕青应助科研力力采纳,获得10
11秒前
cmmnzjsj完成签到,获得积分20
11秒前
核桃应助萌萌采纳,获得10
12秒前
cmmnzjsj发布了新的文献求助10
15秒前
檀檀儿发布了新的文献求助10
15秒前
充电宝应助阿妍碎碎念采纳,获得10
15秒前
JamesPei应助LiuJ采纳,获得10
17秒前
17秒前
周周完成签到 ,获得积分10
18秒前
18秒前
不想干活应助细腻的山芋采纳,获得10
19秒前
无花果应助细腻的山芋采纳,获得10
19秒前
20秒前
21秒前
21秒前
22秒前
23秒前
999999完成签到,获得积分10
24秒前
DDDD源发布了新的文献求助10
25秒前
乌拉拉发布了新的文献求助10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4171255
求助须知:如何正确求助?哪些是违规求助? 3706787
关于积分的说明 11695347
捐赠科研通 3392485
什么是DOI,文献DOI怎么找? 1860738
邀请新用户注册赠送积分活动 920545
科研通“疑难数据库(出版商)”最低求助积分说明 832740