Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 工作(物理) 充电周期 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 机械工程 功率(物理) 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Sang‐Il Kwon
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:435: 134768-134768 被引量:42
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Zx采纳,获得10
1秒前
1秒前
2秒前
地形图完成签到 ,获得积分10
3秒前
锡锡爱看文献完成签到 ,获得积分10
3秒前
Ffffa完成签到,获得积分10
4秒前
5秒前
5秒前
搜集达人应助咕噜采纳,获得10
5秒前
功不唐捐发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
事上炼应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
xzy998应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得50
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得30
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
飘逸果汁发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
farmeryxt应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
xxfsx应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得100
8秒前
xcgh应助科研通管家采纳,获得20
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得30
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
9秒前
farmeryxt应助科研通管家采纳,获得10
9秒前
9秒前
su发布了新的文献求助10
9秒前
谷曼婷发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299311
求助须知:如何正确求助?哪些是违规求助? 4447519
关于积分的说明 13843004
捐赠科研通 4333113
什么是DOI,文献DOI怎么找? 2378534
邀请新用户注册赠送积分活动 1373842
关于科研通互助平台的介绍 1339360