Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 工作(物理) 充电周期 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 机械工程 功率(物理) 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Sang‐Il Kwon
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:435: 134768-134768 被引量:42
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的灵竹完成签到,获得积分10
1秒前
Dogged完成签到 ,获得积分10
7秒前
香蕉觅云应助pupu采纳,获得10
9秒前
105完成签到 ,获得积分10
11秒前
12秒前
贪玩的幻姬完成签到 ,获得积分10
13秒前
14秒前
靓丽念薇完成签到,获得积分10
17秒前
阳昭广完成签到,获得积分10
17秒前
Lynn完成签到 ,获得积分10
18秒前
小乔同学完成签到,获得积分10
19秒前
Orange应助YC_Kao采纳,获得10
20秒前
20秒前
shouyu29完成签到,获得积分0
23秒前
dm11完成签到,获得积分10
25秒前
庄彧完成签到 ,获得积分10
26秒前
释棱完成签到 ,获得积分10
26秒前
斑其完成签到,获得积分10
26秒前
LIU完成签到 ,获得积分10
27秒前
27秒前
富贵完成签到 ,获得积分10
28秒前
29秒前
杨y123完成签到,获得积分10
31秒前
善学以致用应助lxcy0612采纳,获得10
33秒前
33秒前
巴达天使完成签到,获得积分10
34秒前
缥缈冰珍发布了新的文献求助10
36秒前
橙子慢慢来完成签到,获得积分10
36秒前
wbj0722完成签到,获得积分10
37秒前
甜蜜的代容完成签到,获得积分10
37秒前
果子黄发布了新的文献求助10
38秒前
39秒前
小梁要加油应助阮人雄采纳,获得10
39秒前
41秒前
小熙完成签到 ,获得积分10
41秒前
单身的钧完成签到,获得积分10
43秒前
果子黄完成签到,获得积分10
45秒前
英姑应助YGYANG采纳,获得10
45秒前
王QQ完成签到 ,获得积分10
46秒前
知非完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776193
求助须知:如何正确求助?哪些是违规求助? 3321701
关于积分的说明 10207133
捐赠科研通 3036920
什么是DOI,文献DOI怎么找? 1666478
邀请新用户注册赠送积分活动 797492
科研通“疑难数据库(出版商)”最低求助积分说明 757859