Model predictive control of Lithium-ion batteries: Development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms

淡出 电池(电) 模型预测控制 锂离子电池 降级(电信) 荷电状态 电压 计算机科学 工作(物理) 充电周期 汽车工程 控制(管理) 可靠性工程 工程类 模拟 电气工程 机械工程 功率(物理) 汽车蓄电池 人工智能 物理 操作系统 量子力学
作者
Gyuyeong Hwang,Niranjan Sitapure,Jiyoung Moon,H. Lee,Sungwon Hwang,Joseph Sang‐Il Kwon
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:435: 134768-134768 被引量:42
标识
DOI:10.1016/j.cej.2022.134768
摘要

Recently, given the high demand of electric vehicles, the implementation of a battery management system (BMS) for efficient energy use, safety, and state of health estimation has garnered significant attention. For a robust BMS, the battery model which can help the monitoring and control of battery behaviors such as voltage, temperature, stress, and capacity fade should have a high accuracy. Existing battery models like single-particle model (SPM), and pseudo-two-dimensional models have either shown a mismatch with experiments or have a large computational time, both of which are not conducive to fast control of BMS. Furthermore, since existing enhanced SPMs in conjunction with classical and even advanced control methodologies can only elucidate empirically estimated inter-cycle capacity fade, they cannot be applied to intra-cycle control of battery charging. To handle these concerns, in this work, a new battery model is constructed by integrating the enhanced SPM with the first-principled chemical/mechanical degradation physics to accurately predict dynamic intra-cycle capacity fade. Subsequently, the proposed battery model is incorporated into a model predictive control framework to manipulate the applied current to minimize the capacity fade during the charging of a battery. Overall, the developed framework (a) allowed the accurate prediction of both inter-cycle and intra-cycle chemical/mechanical degradation, and the state of the battery (i.e., voltage, temperature, and mechanical stress); (b) enabled experimental model validation at different operation conditions; and (c) yielded a superior input current profile, which minimized the intra-cycle capacity fade, as compared to the traditional constant current-constant voltage (CC-CV) charging protocol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Iiirds完成签到 ,获得积分10
1秒前
二月发布了新的文献求助10
1秒前
归海剑封发布了新的文献求助10
3秒前
zhang发布了新的文献求助10
5秒前
wenli完成签到,获得积分10
6秒前
奶油蜜豆卷完成签到,获得积分10
7秒前
8秒前
10秒前
swan完成签到 ,获得积分10
10秒前
可靠冰枫发布了新的文献求助10
17秒前
Iiiilr完成签到 ,获得积分10
20秒前
sink发布了新的文献求助10
21秒前
pengyh8完成签到 ,获得积分10
22秒前
23秒前
充电宝应助STTY采纳,获得10
23秒前
李清完成签到 ,获得积分10
25秒前
午夜时分收病人完成签到,获得积分10
26秒前
Alan完成签到,获得积分10
27秒前
ca发布了新的文献求助10
27秒前
清水河糖果完成签到,获得积分20
28秒前
28秒前
妮妮发布了新的文献求助10
29秒前
CICI完成签到,获得积分10
30秒前
30秒前
STTY完成签到,获得积分10
31秒前
kkkim完成签到 ,获得积分10
32秒前
LeiZha完成签到,获得积分10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
bingo应助科研通管家采纳,获得10
34秒前
九日完成签到,获得积分10
35秒前
STTY发布了新的文献求助10
35秒前
疯狂的师发布了新的文献求助30
36秒前
Hello应助喜悦代荷采纳,获得10
37秒前
所所应助小线团黑桃采纳,获得10
41秒前
42秒前
李健的小迷弟应助ca采纳,获得10
43秒前
44秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902435
求助须知:如何正确求助?哪些是违规求助? 3447251
关于积分的说明 10847902
捐赠科研通 3172517
什么是DOI,文献DOI怎么找? 1752904
邀请新用户注册赠送积分活动 847454
科研通“疑难数据库(出版商)”最低求助积分说明 789979