已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal classification of Alzheimer's disease and mild cognitive impairment

医学 认知障碍 疾病 认知 阿尔茨海默病 心理学 神经科学 内科学
作者
Daoqiang Zhang,Yaping Wang,Luping Zhou,Hong Yuan,Dinggang Shen
出处
期刊:NeuroImage [Elsevier BV]
卷期号:55 (3): 856-867 被引量:1158
标识
DOI:10.1016/j.neuroimage.2011.01.008
摘要

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its prodromal stage (i.e., mild cognitive impairment (MCI)), has attracted more and more attention recently. So far, multiple biomarkers have been shown to be sensitive to the diagnosis of AD and MCI, i.e., structural MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific proteins. However, most existing research focuses on only a single modality of biomarkers for diagnosis of AD and MCI, although recent studies have shown that different biomarkers may provide complementary information for the diagnosis of AD and MCI. In this paper, we propose to combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to discriminate between AD (or MCI) and healthy controls, using a kernel combination method. Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients (including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters who had not converted to AD within 18 months), and 52 healthy controls are used for development and validation of our proposed multimodal classification method. In particular, for each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest (ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original values are directly used as features. Then, a linear support vector machine (SVM) is adopted to evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of 93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only 86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8% and a specificity of 66%) for our combined method, and only 72% even using the best individual modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified. Moreover, we also evaluate the classification performance when employing a feature selection method to select the most discriminative MR and FDG-PET features. Again, our combined method shows considerably better performance, compared to the case of using an individual modality of biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助keira采纳,获得10
刚刚
企鹅发布了新的文献求助10
1秒前
3366ll完成签到 ,获得积分10
6秒前
科比完成签到,获得积分10
7秒前
酷波er应助阿甘采纳,获得10
8秒前
susuna111完成签到,获得积分10
8秒前
hyman1218完成签到 ,获得积分10
8秒前
科研dog完成签到 ,获得积分10
8秒前
愉快寄真完成签到,获得积分10
11秒前
bkagyin应助小巧日记本采纳,获得10
15秒前
16秒前
夏xia完成签到,获得积分10
17秒前
20秒前
SciGPT应助科研饼采纳,获得10
21秒前
阿甘发布了新的文献求助10
22秒前
韭黄发布了新的文献求助10
24秒前
宋宋完成签到 ,获得积分10
24秒前
阿甘完成签到,获得积分10
28秒前
我是老大应助韭黄采纳,获得10
28秒前
32秒前
11应助haitun采纳,获得10
35秒前
jarrykim发布了新的文献求助10
37秒前
40秒前
40秒前
烟花应助aging123采纳,获得10
40秒前
潇洒的马里奥给潇洒的马里奥的求助进行了留言
43秒前
纯真的德地完成签到,获得积分10
44秒前
46秒前
46秒前
49秒前
随行完成签到 ,获得积分10
50秒前
小天发布了新的文献求助10
50秒前
51秒前
小可爱啵完成签到,获得积分10
51秒前
韭黄发布了新的文献求助10
55秒前
57秒前
科研通AI5应助神勇的戒指采纳,获得10
58秒前
我是老大应助yyt采纳,获得10
1分钟前
体贴的曼凝完成签到,获得积分10
1分钟前
南极熊完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10219057
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440