Generative Partial Multi-View Clustering With Adaptive Fusion and Cycle Consistency

计算机科学 聚类分析 数据挖掘 一致性(知识库) 人工智能 缺少数据 推论 水准点(测量) 机器学习 生成语法 模式识别(心理学) 大地测量学 地理
作者
Qianqian Wang,Zhengming Ding,Zhiqiang Tao,Quanxue Gao,Yun Fu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 1771-1783 被引量:112
标识
DOI:10.1109/tip.2020.3048626
摘要

Nowadays, with the rapid development of data collection sources and feature extraction methods, multi-view data are getting easy to obtain and have received increasing research attention in recent years, among which, multi-view clustering (MVC) forms a mainstream research direction and is widely used in data analysis. However, existing MVC methods mainly assume that each sample appears in all the views, without considering the incomplete view case due to data corruption, sensor failure, equipment malfunction, etc. In this study, we design and build a generative partial multi-view clustering model with adaptive fusion and cycle consistency, named as GP-MVC, to solve the incomplete multi-view problem by explicitly generating the data of missing views. The main idea of GP-MVC lies in two-fold. First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the shared cluster structure across multiple views. Second, view-specific generative adversarial networks with multi-view cycle consistency are developed to generate the missing data of one view conditioning on the shared representation given by other views. These two steps could be promoted mutually, where the learned common representation facilitates data imputation and the generated data could further explores the view consistency. Moreover, an weighted adaptive fusion scheme is implemented to exploit the complementary information among different views. Experimental results on four benchmark datasets are provided to show the effectiveness of the proposed GP-MVC over the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vict发布了新的文献求助30
3秒前
丽优发布了新的文献求助10
4秒前
8秒前
所所应助pipipi采纳,获得10
8秒前
jia完成签到 ,获得积分10
10秒前
野猪挤满远方完成签到,获得积分10
10秒前
10秒前
12秒前
merrylake完成签到 ,获得积分10
12秒前
火星上的玉米完成签到,获得积分10
13秒前
13秒前
14秒前
魔幻的夜白完成签到,获得积分10
15秒前
孤独白拍完成签到,获得积分10
17秒前
17秒前
小蘑菇应助危机的雍采纳,获得10
18秒前
微笑梦曼完成签到,获得积分20
18秒前
孤独白拍发布了新的文献求助10
19秒前
20秒前
标致秋尽完成签到,获得积分10
20秒前
21秒前
一一完成签到 ,获得积分20
21秒前
潇和完成签到,获得积分10
21秒前
21秒前
FashionBoy应助zw采纳,获得10
22秒前
禁止熬夜完成签到,获得积分10
22秒前
24秒前
充电宝应助丽优采纳,获得10
24秒前
嵇老五发布了新的文献求助10
26秒前
潇洒宛筠发布了新的文献求助10
27秒前
catherine完成签到,获得积分10
28秒前
番西茄发布了新的文献求助10
28秒前
28秒前
pipipi发布了新的文献求助10
28秒前
bkagyin应助momo采纳,获得10
28秒前
危机的雍发布了新的文献求助10
29秒前
shy发布了新的文献求助10
31秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338212
求助须知:如何正确求助?哪些是违规求助? 3847554
关于积分的说明 12016327
捐赠科研通 3488625
什么是DOI,文献DOI怎么找? 1914639
邀请新用户注册赠送积分活动 957552
科研通“疑难数据库(出版商)”最低求助积分说明 857925