SMAD公司
MAPK/ERK通路
增生性瘢痕
转化生长因子
Ⅰ型胶原
分子生物学
免疫印迹
细胞生长
活力测定
医学
台盼蓝
信号转导
化学
细胞凋亡
细胞生物学
生物
病理
生物化学
基因
作者
Y Y Li,Jiaomei Yang,Zhao Zheng,Dahai Hu,Zhi‐Dong Wang
摘要
Abstract Background Hypertrophic scar is a common complication in would healing process, and how to effectively prevent and treat it has been a hot and difficult research issue. Previous studies have showed that botulinum toxin type A (BTA) has effects on the prevention and treatment of hypertrophic scar, but little is known about the specific mechanisms. Objective This study aimed to explore the potential mechanisms of BTA on the inhibition of hypertrophic scar formation. Methods Hypertrophic scar‐derived human fibroblasts were cultured and then treated with transforming growth factor‐β1 (TGF‐β1) and various concentrations of BTA. Cell proliferation and viability were measured by CellTiter 96® AQueous One Solution Cell Proliferation Assay and trypan blue staining, respectively. The total amount of collagen was examined using Sirius red staining. Collagen I and Collagen III in the culture supernatant were evaluated by enzyme‐linked immunosorbent assay. Reverse transcription‐quantitative polymerase chain reaction and Western blot analysis were performed to detect the transcription and translation levels. Results Our results revealed that BTA decreased the proliferation of hypertrophic scar‐derived human fibroblasts. The mRNA and protein expression levels of alpha‐smooth muscle actin, collagen I, and collagen III induced by TGF‐β1 were inhibited by BTA in a dose‐dependent manner. BTA also inhibited the phosphorylation of Smad2/3 and ERK. Conclusion BTA decreased the proliferation of fibroblasts and prevented overdeposition of ECM through the inhibition of the TGF‐β1/Smad and ERK pathways. The findings of this study provide new scientific reference for the prevention and treatment of hypertrophic scar.
科研通智能强力驱动
Strongly Powered by AbleSci AI