Joint Analysis and Weighted Synthesis Sparsity Priors for Simultaneous Denoising and Destriping Optical Remote Sensing Images

计算机科学 正规化(语言学) 先验概率 人工智能 降噪 反问题 阈值 缩小 图像(数学) 稀疏逼近 最大后验估计 计算机视觉 操作员(生物学) 算法 数学 贝叶斯概率 最大似然 基因 统计 数学分析 转录因子 生物化学 抑制因子 化学 程序设计语言
作者
Zhenghua Huang,Yaozong Zhang,Qian Li,Xuan Li,Tianxu Zhang,Nong Sang,Hong Hu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (10): 6958-6982 被引量:87
标识
DOI:10.1109/tgrs.2020.2978276
摘要

Stripe and random noise are two different degradation phenomena that commonly coexist in optical remote sensing images, and they are often modeled as inverse problems. In model-based inverse problems, analysis and synthesis sparse representations (SSRs) are used as regularization terms to obtain approximate solutions due to their respective merits, i.e., the nonzero coefficients in SSR are usually used to describe an image, while the indexes of zeros in analysis sparse representation (ASR) are used to characterize the stripe. Inspired by these merits, we propose a unified variational framework, called a joint analysis and weighted synthesis (JAWS) sparsity model, to simultaneously separate the clean image and the stripe from a single optical remote sensing image. To solve the JAWS sparsity model efficiently, an alternating minimization optimization strategy is first employed to separate it into two subproblems that are used for different tasks. One called as weighted SSR (WSSR) is the main for optical remote sensing image denoising, which can be effectively solved by employing the weighted singular value thresholding operator, while the other called as ASR is the main approach for optical remote sensing image destriping, which is optimized by adopting the split Bregman iteration. By minimizing the two subproblems alternatively, the proposed JAWS sparsity model is efficiently solved. Finally, both quantitative and qualitative results of experiments on synthetic and real-world optical remote sensing images validate that the proposed approach is effective and even better than the state of the arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk发布了新的文献求助10
刚刚
刚刚
nene发布了新的文献求助10
2秒前
2秒前
pjh发布了新的文献求助10
2秒前
香蕉觅云应助zrs采纳,获得10
4秒前
深情安青应助快乐的烨磊采纳,获得10
5秒前
tdtk发布了新的文献求助10
6秒前
魔幻灯泡完成签到,获得积分10
7秒前
小二郎应助pjh采纳,获得10
7秒前
Leon Lai完成签到,获得积分10
10秒前
11秒前
liangliu完成签到 ,获得积分10
12秒前
李健应助活泼的诗兰采纳,获得10
13秒前
mokosk完成签到,获得积分10
13秒前
15秒前
自由莺完成签到 ,获得积分10
16秒前
16秒前
喜悦的依琴完成签到,获得积分10
16秒前
沈迎松完成签到,获得积分10
19秒前
21秒前
23秒前
26秒前
哈哈发布了新的文献求助30
27秒前
ZW发布了新的文献求助10
27秒前
酷波er应助melenda采纳,获得10
29秒前
知夏完成签到,获得积分10
30秒前
北北发布了新的文献求助20
32秒前
菜籽发布了新的文献求助10
32秒前
酷波er应助科研通管家采纳,获得30
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
在水一方应助科研通管家采纳,获得10
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
情怀应助科研通管家采纳,获得10
32秒前
CodeCraft应助科研通管家采纳,获得10
32秒前
今后应助科研通管家采纳,获得20
32秒前
星辰大海应助科研通管家采纳,获得10
33秒前
慕青应助科研通管家采纳,获得10
33秒前
打打应助科研通管家采纳,获得10
33秒前
烟花应助科研通管家采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304