数据挖掘
水准点(测量)
计算机科学
比例(比率)
数据质量
透视图(图形)
领域(数学分析)
工程类
人工智能
数学
物理
地理
公制(单位)
数学分析
量子力学
运营管理
大地测量学
作者
Junseo Bae,Kunhee Choi
标识
DOI:10.1080/03081060.2020.1780708
摘要
Use of sensor data has been increasingly common in recent years, yet there is still a knowledge gap in evaluating the precision of traffic sensor data being used in traffic analyses for developing a transportation management plan. This paper fills this gap by exploring a new approach to evaluating the level of precision of large-scale traffic sensor data. The proposed analytical framework incorporates a spatiotemporal domain for the purpose of projecting spatiotemporal characteristics of the data into a repeatability and reproducibility (R&R) study. The main finding of this study is that the proposed framework is effective in examining the precision level of large-scale data spatiotemporally. The proposed framework would be useful for researchers and practitioners to benchmark precision measurements of traffic sensor data in a way to gather quality data and avoid any potential biased result of deeper traffic analyses.
科研通智能强力驱动
Strongly Powered by AbleSci AI