Deep-Learning System Detects Neoplasia in Patients With Barrett’s Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking

计算机辅助设计 巴雷特食管 人工智能 医学 数据集 基本事实 食管 分割 阶段(地层学) 水准点(测量) 计算机辅助诊断 内科学 放射科 标杆管理 计算机科学 癌症 腺癌 古生物学 营销 业务 工程类 工程制图 地理 生物 大地测量学
作者
Albert J. de Groof,Maarten R. Struyvenberg,Joost van der Putten,Fons van der Sommen,Kiki Fockens,Wouter L. Curvers,Sveta Zinger,Roos E. Pouw,Emmanuel Coron,Francisco Baldaque‐Silva,Oliver Pech,Bas L. Weusten,Alexander Meining,Horst Neuhaus,Raf Bisschops,John Dent,Erik J. Schoon,Peter H. de With,Jacques Bergman
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:158 (4): 915-929.e4 被引量:292
标识
DOI:10.1053/j.gastro.2019.11.030
摘要

We aimed to develop and validate a deep-learning computer-aided detection (CAD) system, suitable for use in real time in clinical practice, to improve endoscopic detection of early neoplasia in patients with Barrett's esophagus (BE).We developed a hybrid ResNet-UNet model CAD system using 5 independent endoscopy data sets. We performed pretraining using 494,364 labeled endoscopic images collected from all intestinal segments. Then, we used 1704 unique esophageal high-resolution images of rigorously confirmed early-stage neoplasia in BE and nondysplastic BE, derived from 669 patients. System performance was assessed by using data sets 4 and 5. Data set 5 was also scored by 53 general endoscopists with a wide range of experience from 4 countries to benchmark CAD system performance. Coupled with histopathology findings, scoring of images that contained early-stage neoplasia in data sets 2-5 were delineated in detail for neoplasm position and extent by multiple experts whose evaluations served as the ground truth for segmentation.The CAD system classified images as containing neoplasms or nondysplastic BE with 89% accuracy, 90% sensitivity, and 88% specificity (data set 4, 80 patients and images). In data set 5 (80 patients and images) values for the CAD system vs those of the general endoscopists were 88% vs 73% accuracy, 93% vs 72% sensitivity, and 83% vs 74% specificity. The CAD system achieved higher accuracy than any of the individual 53 nonexpert endoscopists, with comparable delineation performance. CAD delineations of the area of neoplasm overlapped with those from the BE experts in all detected neoplasia in data sets 4 and 5. The CAD system identified the optimal site for biopsy of detected neoplasia in 97% and 92% of cases (data sets 4 and 5, respectively).We developed, validated, and benchmarked a deep-learning computer-aided system for primary detection of neoplasia in patients with BE. The system detected neoplasia with high accuracy and near-perfect delineation performance. The Netherlands National Trials Registry, Number: NTR7072.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的电灯胆完成签到,获得积分10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得30
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
孙燕应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
打打应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
执着的忆雪完成签到,获得积分10
4秒前
诗呓完成签到 ,获得积分10
4秒前
水龙吟发布了新的文献求助10
6秒前
小透明发布了新的文献求助10
9秒前
酷波er应助刘亚男采纳,获得10
10秒前
含蓄向卉完成签到,获得积分20
12秒前
霍小美完成签到,获得积分10
13秒前
沙丁鹌鹑完成签到 ,获得积分10
13秒前
balko发布了新的文献求助10
14秒前
15秒前
mm完成签到,获得积分10
16秒前
17秒前
Arthur完成签到,获得积分10
19秒前
优雅立辉完成签到,获得积分20
20秒前
下雨完成签到,获得积分10
20秒前
qgyj发布了新的文献求助10
21秒前
21秒前
LQZ发布了新的文献求助10
24秒前
24秒前
26秒前
Arthur给Arthur的求助进行了留言
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107798
求助须知:如何正确求助?哪些是违规求助? 3645759
关于积分的说明 11548702
捐赠科研通 3352094
什么是DOI,文献DOI怎么找? 1841793
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825425