亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Senescent Cells in Cancer Therapy: Friends or Foes?

癌症 癌症治疗 癌细胞 医学 癌症研究 心理学 内科学
作者
Boshi Wang,Jaskaren Kohli,Marco Demaria
出处
期刊:Trends in cancer [Elsevier]
卷期号:6 (10): 838-857 被引量:249
标识
DOI:10.1016/j.trecan.2020.05.004
摘要

Cellular senescence is a common outcome of various anticancer interventions.Senescence-associated secretory phenotypes (SASPs) have pro-tumorigenic functions.Evidence exists of increased cellular senescence in patients treated for various types of cancer.Therapy-induced senescence can cause cancer metastasis and relapse and several adverse reactions to cancer treatments.Pharmacological interference with detrimental senescence might be considered to improve the efficacy of cancer treatments and improve the life quality of treated patients. Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient. Several cancer interventions induce DNA damage and promote senescence in cancer and nonmalignant cells. Senescent cells secrete a collection of proinflammatory factors collectively termed the senescence-associated secretory phenotype (SASP). SASP factors are able to potentiate various aspects of tumorigenesis, including proliferation, metastasis, and immunosuppression. Moreover, the accumulation and persistence of therapy-induced senescent cells can promote tissue dysfunction and the early onset of various age-related symptoms in treated cancer patients. Here, we review in detail the mechanisms by which cellular senescence contributes to cancer development and the side effects of cancer therapies. We also review how pharmacological interventions to eliminate senescent cells or inhibit SASP production can mitigate these negative effects and propose therapeutic strategies based on the age of the patient. Cellular senescence is a multifaceted and highly heterogeneous state characterized by generally irreversible growth arrest, elevated lysosomal activity, resistance to apoptotic stimuli, deregulated metabolism, persistent DNA damage, and elevated secretion of chemokines, cytokines and growth factors [1.Gorgoulis V. et al.Cellular senescence: defining a path forward.Cell. 2019; 179: 813-827Abstract Full Text Full Text PDF PubMed Scopus (110) Google Scholar]. The stability of the cell cycle arrest relies on the cyclin-dependent kinase (CDK) inhibitors p16 and p21 – often regulated by the master tumor suppressor protein p53 – and their elevated expression serves as a marker for senescence detection [2.Hernandez-Segura A. et al.Hallmarks of cellular senescence.Trends Cell Biol. 2018; 28: 436-453Abstract Full Text Full Text PDF PubMed Scopus (230) Google Scholar]. Another important feature of virtually all senescent cells is increased activation of senescence-associated (SA)-β-galactosidase, a lysosomal enzyme whose activity is dispensable for the senescence phenotype [3.Lee B. et al.Senescence-associated β-galactosidase is lysosomal β-galactosidase.Aging Cell. 2006; 5: 187-195Crossref PubMed Scopus (496) Google Scholar]. Especially in cancer studies, SA-β-galactosidase activity is often used as a unique surrogate marker to define a senescent state. However, SA-β-galactosidase activity can be observed in some non-senescent contexts such as hair follicles and sebaceous glands in the skin [4.Dimri G. Medrano E. A biomarker that identifies senescent human cells in culture and in aging skin in vivo.Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 9363-9367Crossref PubMed Scopus (4984) Google Scholar]. It can also be detected in activated macrophages, including those infiltrating tumors, which may cause difficulties in the precise identification of senescent cancer cells in a tumor microenvironment in vivo [5.Hall B. et al.p16Ink4a and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli.Aging. 2017; 9: 1867-1884Crossref PubMed Scopus (0) Google Scholar,6.Sharpless N. Sherr C. Forging a signature of in vivo senescence.Nat. Rev. Cancer. 2015; 15: 397-408Crossref PubMed Scopus (318) Google Scholar]. Recent studies have demonstrated that senescent cells are able to resist proapoptotic stresses via the upregulation of antiapoptotic mechanisms. Specific regulators of this function seem highly cell-type and stress dependent, making their use as markers for senescence challenging [7.Yosef R. et al.Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL.Nat. Commun. 2016; 7: 11190Crossref PubMed Scopus (250) Google Scholar,8.Zhu Y. et al.Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors.Aging Cell. 2016; 15: 428-435Crossref PubMed Scopus (244) Google Scholar]. On the same line, while metabolism is perturbed in senescent cells, no clear common metabolic mechanism that can be exploited for senescence identification has been demonstrated. A common trigger for senescence induction is the activation of a persistent DNA damage response (DDR), making the DDR markers γ-H2AX and 53BP1 focus staining widely used markers for senescent cells. These proteins are also components of DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS) [9.Rodier F. et al.DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion.J. Cell Sci. 2010; 124: 68-81Crossref PubMed Scopus (259) Google Scholar]. Moreover, senescence-associated heterochromatin foci (SAHFs), which are regions of condensed chromatin containing heterochromatin protein 1 and the histone H2A variant macroH2A and HMGA proteins, are observed in human, but not mouse, senescent cells [10.Zhang R. et al.Molecular dissection of formation of senescence-associated heterochromatin foci.Mol. Cell. Biol. 2007; 27: 2343-2358Crossref PubMed Scopus (248) Google Scholar]. One of the most variable senescence-associated phenotypes is the SASP, a transcriptional program for genes encoding secreted proteins that is a consequence of persistent DDR [11.Rodier F. et al.Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion.Nat. Cell Biol. 2009; 11: 973-979Crossref PubMed Scopus (1102) Google Scholar] and mediated by the NF-κB [12.Chien Y. et al.Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity.Gene Dev. 2011; 25: 2125-2136Crossref PubMed Scopus (0) Google Scholar], p38 MAPK [13.Freund A. et al.p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype.EMBO J. 2011; 30: 1536-1548Crossref PubMed Scopus (418) Google Scholar], and C/EBPβ pathways [14.Kuilman T. et al.Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network.Cell. 2008; 133: 1019-1031Abstract Full Text Full Text PDF PubMed Scopus (1071) Google Scholar]. The SASP is enriched in proinflammatory factors, such as IL-6, IL-8, CXCL1, CCL2, CCL5, and matrix metalloproteinase (MMP) 3 [15.Coppé J. et al.Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor.PLoS Biol. 2008; 6e301Crossref PubMed Scopus (1707) Google Scholar], which can be used as markers for DNA damage-induced senescence. The senescence-associated growth arrest is seen as a potent strategy to interfere with cancer progression. Moreover, SASP factors can stimulate immunosurveillance mechanisms and potentiate the tumor suppressive function of senescent cells by guiding the immune system to mount anticancer responses. For this reason, features of senescent cells serve as common biomarkers to evaluate the efficacy of anticancer treatments. While cellular senescence is an oncosuppressive mechanism and a potent anticancer therapeutic strategy (for more information see [16.Collado M. et al.Tumour biology: senescence in premalignant tumours.Nature. 2005; 436: 642Crossref PubMed Scopus (1035) Google Scholar,17.te Poele R.H. et al.DNA damage is able to induce senescence in tumor cells in vitro and in vivo.Cancer Res. 2002; 62: 1876-1883PubMed Google Scholar]), several issues exist with the generation and persistence of therapy-induced senescent cells. First, the SASP can play detrimental roles by protecting tumors from immune clearance, providing growth factors, and enhancing angiogenesis. Second, because most anticancer treatments are administered via systemic routes, many senescent cells are generated in nontumor areas [18.Ewald J. et al.Therapy-induced senescence in cancer.J. Natl. Cancer Inst. 2010; 102: 1536-1546Crossref PubMed Scopus (358) Google Scholar]. This excessive accumulation can have substantial side effects and accelerate the onset and progression of chronic diseases such as cardiovascular, fibrotic, and neurodegenerative diseases, which normally are observed at advanced age [19.Campisi J. et al.Cellular senescence: a link between cancer and age-related degenerative disease?.Semin. Cancer Biol. 2011; 21: 354-359PubMed Google Scholar]. Third, because cancer cells are genomically unstable, they can bypass the senescence growth arrest and restore aggressive and uncontrolled proliferation. This review analyzes these points and discusses the potential strategies to limit the detrimental effects of therapy-induced senescent cells. A significant number of commonly used cancer interventions have been associated with the induction of cellular senescence in either tumor or nontumor cells and tissues (Table 1, Key Table). These senescence-inducing interventions can be categorized into five families: chemotherapy, radiotherapy, CDK4/6 inhibitors, epigenetic modulators, and immunotherapy.Table 1Key Table. Summary of Senescence-Inducing Cancer TherapyCategoryDrugCell typeMarkerTreatmentRefsChemotherapyDoxorubicinFibrosarcoma (HT1080)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation40 nM for 4 days[38.Chang B. et al.A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents.Cancer Res. 1999; 59: 3761-3767PubMed Google Scholar]Breast cancer (MCF7)(i) Elevated SA-β-galactosidase activities(ii) Increased micronuclei formation50 nM for 2 daysBreast cancer (MDA-MB-231)(i) Increased micronuclei formation50 nM for 2 daysColon cancer (HCT116)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation50 nM for 4 daysProstate cancer (PC3)(i) G1 cell cycle arrest(ii) Increased micronuclei formation100 nM for 4 daysProstate cancer (LNCaP)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation100–500 nM for 4 daysOvarian cancer (A2780)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation20–50 nM for 4 daysGlioma (U251)(i) Elevated SA-β-galactosidase activities(ii) Increased micronuclei formation200 nM for 4 daysLeukemia (K562)(i) Elevated SA-β-galactosidase activities50 nM for 4 days[22.Yang M. et al.Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells.PLoS One. 2012; 7e37205Crossref PubMed Scopus (31) Google Scholar]Melanoma (SK-MEL-103)(i) Elevated SA-β-galactosidase activities1 μM for 7 days[32.Muñoz-Espín D. et al.A versatile drug delivery system targeting senescent cells.EMBO Mol. Med. 2018; 10e9355Crossref PubMed Scopus (36) Google Scholar]Vascular smooth muscle cells(i) Elevated SA-β-galactosidase activities(ii) Morphology (enlarged)(iii) G1 cell cycle arrest(iv) p53/p21 upregulation(v) p16 upregulation(vi) SASP induction(vii) Increased DDR100 nM for 24 h[135.Bielak-Zmijewska A. et al.A comparison of replicative senescence and doxorubicin-induced premature senescence of vascular smooth muscle cells isolated from human aorta.Biogerontology. 2014; 15: 47-64Crossref PubMed Scopus (46) Google Scholar]Prostate stromal cells (PSC27)(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation10 μM for 24 h[136.Chen F. et al.Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance.Nat. Commun. 2018; 9: 4315Crossref PubMed Scopus (18) Google Scholar]Rat alveolar epithelial cells (L2)(i) Elevated SA-β-galactosidase activities(ii) p53/p21 upregulation50 nM for 24 h[137.Jiang C. et al.Serpine 1 induces alveolar type II cell senescence through activating p53–p21–Rb pathway in fibrotic lung disease.Aging Cell. 2017; 16: 1114-1124Crossref PubMed Scopus (0) Google Scholar]Human fibroblasts (IMR90)(i) Elevated SA-β-galactosidase activities(ii) p16 upregulation(iii) SASP induction100 nM for two times 24 h24 h drug holiday in between[138.Baar M. et al.Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging.Cell. 2017; 169: 132-147.e16Abstract Full Text Full Text PDF PubMed Scopus (391) Google Scholar]Human fibroblasts (WI38)(i) Elevated SA-β-galactosidase activities(ii) p53 upregulation100 or 500 ng/ml for 4 days[139.Leontieva O. et al.Weak p53 permits senescence during cell cycle arrest.Cell Cycle. 2010; 9: 4323-4327Crossref PubMed Scopus (0) Google Scholar]Mouse dermal fibroblast(i) Elevated SA-β-galactosidase activities(ii) Reduced EdU incorporation(iii) p21 upregulation(iv) p16 upregulation(v) LMNB1 reduction(vi) SASP induction(vii) DDR250 nM for 24 h[30.Demaria M. et al.Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov. 2017; 7: 165-176Crossref PubMed Scopus (281) Google Scholar]Reporter p16-3MR mice(i) p16 upregulation in tissues(ii) Increased bioluminescence(iii) DDR markers(iv) SASP in serum(v) p21 staining in the heart and skin10 mg/kg onceEtoposideFibrosarcoma (HT1080)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation900 nM once[38.Chang B. et al.A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents.Cancer Res. 1999; 59: 3761-3767PubMed Google Scholar]Fibroblasts (IMR90)(i) Elevated SA-β-galactosidase activities(ii) p53 upregulation100 μM once[12.Chien Y. et al.Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity.Gene Dev. 2011; 25: 2125-2136Crossref PubMed Scopus (0) Google Scholar]CamptothecinColon cancer (HCT116)(i) Elevated SA-β-galactosidase activities(ii) Reduced colony formation capacity(iii) p53/p21 upregulation20 nM for 96 h[140.Han Z. et al.Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin.J. Biol. Chem. 2002; 277: 17154-17160Crossref PubMed Scopus (213) Google Scholar]Lung cancer (H1299)(i) Elevated SA-β-galactosidase activities30 nM for 24 h or 48 h[23.Roberson R. et al.Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers.Cancer Res. 2005; 65: 2795-2803Crossref PubMed Scopus (215) Google Scholar]CisplatinNasopharyngeal carcinoma (CNE1)(i) Elevated SA-β-galactosidase activities0.5 or 2 μg/ml for 24 or 48 h[21.Wong S. et al.Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells.Cancer Res. 1998; 58: 5019-5022PubMed Google Scholar]Fibrosarcoma (HT1080)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation2.2 μM[38.Chang B. et al.A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents.Cancer Res. 1999; 59: 3761-3767PubMed Google Scholar]Immortalized skin fibroblasts (hTERT-BJ)(i) Elevated SA-β-galactosidase activities(ii) p53 upregulation(iii) IL-6 upregulation100 μM for 24–72 h[141.Peiris-Pagès M. et al.Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog–GLI signalling in breast cancer cells.Oncotarget. 2015; 6: 10728-10745Crossref PubMed Google Scholar]Reporter p16-3MR mice(i) Increased bioluminescence(ii) p16 upregulation in skin and lung2.3 mg/kg for 3 consecutive days[30.Demaria M. et al.Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov. 2017; 7: 165-176Crossref PubMed Scopus (281) Google Scholar]PaclitaxelBreast cancer (MCF7)(i) Reduced proliferation(ii) Increased DDR(iii) Elevated SA-β-galactosidase activities0.03, 0.3, 1 μM for 5 days[29.Hu W. et al.Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies.Clin. Cancer Res. 2016; 22: 2000-2008Crossref PubMed Scopus (76) Google Scholar]Endothelial cell (HUVEC)(i) Elevated SA-β-galactosidase activities2.5 or 5 nM for 24 h[24.Ota H. et al.Sirolimus and everolimus induce endothelial cellular senescence via sirtuin 1 down-regulation therapeutic implication of cilostazol after drug-eluting stent implantation.J. Am. Coll. Cardiol. 2009; 53: 2298-2305Crossref PubMed Google Scholar]Immortalized skin fibroblasts (hTERT-BJ)(i) Elevated SA-β-galactosidase activities(ii) p53 upregulation(iii) IL-6 upregulation100 nM for 24 to 72 h[141.Peiris-Pagès M. et al.Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog–GLI signalling in breast cancer cells.Oncotarget. 2015; 6: 10728-10745Crossref PubMed Google Scholar]Human bone marrow mononuclear cells (hBMNCs)(i) Reduced proliferation(ii Increased DDR(iii) Elevated SA-β-galactosidase activities0.03, 0.3, 1 μM for 5 days[29.Hu W. et al.Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies.Clin. Cancer Res. 2016; 22: 2000-2008Crossref PubMed Scopus (76) Google Scholar]Mouse dermal fibroblast(i) Elevated SA-β-galactosidase activities(ii) Reduced population doubling(iii) p16 upregulation(iv) LMNB1 reduction(v) SASP induction(vi) Increased DDR50 nM for 24 h or 48 h[30.Demaria M. et al.Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov. 2017; 7: 165-176Crossref PubMed Scopus (281) Google Scholar]Reporter p16-3MR mice(i) Increased bioluminescence(ii) p16 upregulation in skin and lung10 mg/kg for 3 consecutive daysBleomycinLung cancer (A549)(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation(iii) Increased cell size(iv) p53/p21 upregulation50 μg/ml for 120 h50 mU/ml for 48 h0.05–50 μg/ml for 72 h[33.Qiu T. et al.PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation.Aging (Albany NY). 2019; 11: 7492-7509Crossref PubMed Scopus (4) Google Scholar,142.Linge A. et al.Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells.Int. J. Biochem. Cell Biol. 2007; 39: 1964-1974Crossref PubMed Scopus (0) Google Scholar,143.Tian Y. et al.Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation.Aging Cell. 2019; 18e12858Crossref PubMed Scopus (21) Google Scholar]Mouse lung tissue(i) Elevated SA-β-galactosidase activities(ii) Upregulated p21 staining(iii) Reduced p-RB staining(iv) Increased DDR(v) Increased SASP5 U/kg50 mg/kg2.5 mg/kg[33.Qiu T. et al.PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation.Aging (Albany NY). 2019; 11: 7492-7509Crossref PubMed Scopus (4) Google Scholar, 34.Shivshankar P. et al.Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice.Am. J. Respir. Cell Mol. Biol. 2012; 47: 28-36Crossref PubMed Scopus (58) Google Scholar, 35.Aoshiba K. et al.Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury.Exp. Toxicol. Pathol. 2013; 65: 1053-1062Crossref PubMed Scopus (43) Google Scholar]Rat alveolar epithelial cell/lung tissue(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation5 μg/ml for 24 h[137.Jiang C. et al.Serpine 1 induces alveolar type II cell senescence through activating p53–p21–Rb pathway in fibrotic lung disease.Aging Cell. 2017; 16: 1114-1124Crossref PubMed Scopus (0) Google Scholar]Human alveolar epithelial cell(i) Elevated SA-β-galactosidase activities(ii) p21 upregulation(iii) p16 upregulation0.1–10 μg/ml for 5 days[33.Qiu T. et al.PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation.Aging (Albany NY). 2019; 11: 7492-7509Crossref PubMed Scopus (4) Google Scholar,143.Tian Y. et al.Loss of PTEN induces lung fibrosis via alveolar epithelial cell senescence depending on NF-κB activation.Aging Cell. 2019; 18e12858Crossref PubMed Scopus (21) Google Scholar]Skin fibroblasts (HCA2)(i) SASP induction10 μg/ml for 24 h[85.Liu D. Hornsby P. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion.Cancer Res. 2007; 67: 3117-3126Crossref PubMed Scopus (245) Google Scholar]Prostate stromal cells (PSC27)(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation(iii) SASP induction50 μg/ml for 24 h[136.Chen F. et al.Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance.Nat. Commun. 2018; 9: 4315Crossref PubMed Scopus (18) Google Scholar]TemozolomideGlioma(i) Elevated SA-β-galactosidase activities(ii) Reduced colony formation capacity(iii) p53/p21 upregulation10 μg/ml for 24 h100 μM for 24 h[144.Terzis A. Temozolomide induces apoptosis and senescence in glioma cells cultured as multicellular spheroids.Br. J. Cancer. 2003; 88: 463-469Crossref PubMed Scopus (87) Google Scholar, 145.Hirose Y. et al.Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence.Cancer Res. 2005; 65: 4861-4869Crossref PubMed Scopus (0) Google Scholar, 146.Ohba S. et al.Inhibition of c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity in human glioma cells.J. Neuro-Oncol. 2009; 95: 307-316Crossref PubMed Scopus (0) Google Scholar, 147.Knizhnik A. et al.Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage.PLoS One. 2013; 8e55665Crossref PubMed Scopus (137) Google Scholar]Melanoma(i) Reduced colony formation capacity(ii) p53/p21 upregulation25 to 250 μM for 12 days[148.Mhaidat N. et al.Temozolomide induces senescence but not apoptosis in human melanoma cells.Br. J. Cancer. 2007; 97: 1225-1233Crossref PubMed Scopus (53) Google Scholar]Colorectal cancer(i) Elevated SA-β-galactosidase activities100–1000 μM for 48 h[25.Jaiswal A. et al.NSC666715 and its analogs inhibit strand-displacement activity of DNA polymerase β and potentiate temozolomide-induced DNA damage, senescence and apoptosis in colorectal cancer cells.PLoS One. 2015; 10e0123808Crossref PubMed Scopus (9) Google Scholar]Reporter p16-3MR mice(i) Increased bioluminescence(ii) p16 upregulation in skin and lung10 mg/kg for 3 consecutive days[30.Demaria M. et al.Cellular senescence promotes adverse effects of chemotherapy and cancer relapse.Cancer Discov. 2017; 7: 165-176Crossref PubMed Scopus (281) Google Scholar]RadiotherapyFibrosarcoma (HT1080)(i) Elevated SA-β-galactosidase activities(ii) G1 cell cycle arrest(iii) Increased micronuclei formation1300 rad[38.Chang B. et al.A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents.Cancer Res. 1999; 59: 3761-3767PubMed Google Scholar]Breast cancer (MCF7)(i) Elevated SA-β-galactosidase activitiesFive times 2 Gy[149.DeMasters G. et al.Potentiation of cell killing by fractionated radiation and suppression of proliferative recovery in MCF-7 breast tumor cells by the vitamin D3 analog EB 1089.J. Steroid Biochem. Mol. Biol. 2004; 92: 365-374Crossref PubMed Scopus (23) Google Scholar]Breast cancer (MCF7 and MDA-231)(i) Elevated SA-β-galactosidase activities(ii) p53 and p21 upregulation10 Gy[40.Jones K. et al.p53-dependent accelerated senescence induced by ionizing radiation in breast tumour cells.Int. J. Radiat. Biol. 2009; 81: 445-458Crossref Scopus (86) Google Scholar]Glioblastoma (U87)(i) Elevated SA-β-galactosidase activities2 Gy[41.Quick Q. Gewirtz D. An accelerated senescence response to radiation in wild-type p53 glioblastoma multiforme cells.J. Neurosurg. 2006; 105: 111-118Crossref PubMed Scopus (0) Google Scholar]Endothelial cells (HUVEC and BAEC)(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation8 Gy[42.Igarashi K. et al.Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells.Exp. Cell Res. 2007; 313: 3326-3336Crossref PubMed Scopus (0) Google Scholar]Keloid fibroblasts(i) Enlarged cell size(ii) Elevated SA-β-galactosidase activities(iii) G1 cell cycle arrest(iv) p16, p21 upregulation2, 4, 8 Gy[43.Ji J. et al.Ionizing irradiation inhibits keloid fibroblast cell proliferation and induces premature cellular senescence.J. Dermatol. 2015; 42: 56-63Crossref PubMed Scopus (17) Google Scholar]Fibroblasts (HCA2)(i) Elevated SA-β-galactosidase activities(ii) SASP induction(iii) Colony formation assay (irreversible)10 Gy[44.Laberge R. et al.mTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation.Nat. Cell Biol. 2015; 17: 1049-1061Crossref PubMed Scopus (375) Google Scholar]Fibroblasts (IMR90 and WI38)(i) Elevated SA-β-galactosidase activities(ii) Reduced BrdU incorporation2.5, 5, 7.5, and 10 Gy[45.Chang J. et al.Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice.Nat. Med. 2016; 22: 78-83Crossref PubMed Scopus (540) Google Scholar]Mouse inguinal fat(i) p16 upregulation in organs(ii) Elevated SA-β-galactosidase activities10 Gy local irradiation on one leg[46.Zhu Y. et al.The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs.Aging Cell. 2015; 14: 644-658Crossref PubMed Scopus (561) Google Scholar]Fibroblasts from naked mole rats(i) Elevated SA-β-galactosidase activities(ii) p21 upregulation(iii) Reduced BrdU incorporation10 Gy or 20 Gy[47.Zhao Y. et al.Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence.Proc. Natl. Acad. Sci. U. S. A. 2018; 115201721160Crossref Scopus (14) Google Scholar]Mouse tibialis anterior muscle(i) Elevated SA-β-galactosidase activities10 Gy local irradiation[48.Chiche A. et al.Injury-induced senescence enables in vivo reprogramming in skeletal muscle.Cell Stem Cell. 2017; 20: 407-414.e4Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar]Reporter p16-3MR mice(i) Increased bioluminescence(ii) p16 upregulation in organs(iii) SASP induction in organs7 Gy total-body irradiation[49.Demaria M. et al.An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA.Dev. Cell. 2014; 31: 722-733Abstract Full Text Full Text PDF PubMed Scopus (549) Google Scholar]Mouse bone(i) p16 upregulation in organs(ii) SASP induction in organs20 Gy local irradiation[114.Yao Z. et al.Therapy-induced senescence drives bone loss.Cancer Res. 2020; 80: 1171-1182Crossref PubMed Scopus (4) Google Scholar]CDK4/6 inhibitorsPalbociclibBreast cancer (MCF7)(i) Elevated SA-β-galactosidase activities(ii) Reduced Proliferation0.1, 0.3, 1 μM for 5 days[29.Hu W. et al.Mechanistic investigation of bone marrow suppression associated with palbociclib and its differentiation from cytotoxic chemotherapies.Clin. Cancer Res. 2016; 22: 2000-2008Crossref PubMed Scopus (76) Google Scholar]Breast cancer (MCF7 and T47D)(i) Elevated SA-β-galactosidase activities(ii) Reduced Proliferation (reversible)1 or 5 μM for 6 days5 μM shows off-target effects[150.Vijayaraghavan S. et al.CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers.Nat. Commun. 2017; 8: 15916Crossref PubMed Scopus (87) Google Scholar]Melanoma (MEL10)(i) Elevated SA-β-galactosidase activities(ii) Upregulated cyclin-D10.5 μM for 7 days[151.Leontieva O. Blagosklonny M. CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence: duration of cell cycle arrest and MTOR activity determine geroconversion.Cell Cycle. 2013; 12: 3063-3069Crossref PubMed Scopus (60) Google Scholar]Melanoma (1205Lu)(i) G1 growth arrest (FACS)(ii) Reduced p-Rb(iii) Elevated SA-β-galactosidase activities(iv) SASP induction(v) Did not check reversibility1 μM for 8 days[69.Yoshida A. et al.Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6.Cancer Res. 2016; 76: 2990-3002Crossref PubMed Google Scholar]Melanoma (SK-MEL-103)(i) Elevated SA-β-galactosidase activities1 μM for 14 days[32.Muñoz-Espín D. et al.A versatile drug delivery system targeting senescent cells.EMBO Mol. Med. 2018; 10e9355Crossref PubMed Scopus (36) Google Scholar]Melanoma (SK-MEL-103)(i) Elevated SA-β-galactosidase activities(ii) Colony formation assay1 μM for 7 days[22.Yang M. et al.Induction of cellular senescence by doxorubicin is associated with upregulated miR-375 and induction of autophagy in K562 cells.PLoS One. 2012; 7e37205Crossref PubMed Scopus (31) Google Scholar]Liposarcoma (L
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
laihuimin完成签到,获得积分10
1秒前
从容访旋发布了新的文献求助10
4秒前
丘比特应助白瓜采纳,获得10
7秒前
7秒前
17秒前
souther完成签到,获得积分0
18秒前
23秒前
Tsingyuan完成签到,获得积分10
27秒前
27秒前
doctorw完成签到 ,获得积分10
28秒前
从容访旋完成签到,获得积分10
32秒前
33秒前
33秒前
34秒前
35秒前
36秒前
白瓜发布了新的文献求助10
39秒前
秋雪瑶应助从容访旋采纳,获得10
45秒前
45秒前
45秒前
哈比人linling完成签到,获得积分10
53秒前
英俊的铭应助lena采纳,获得10
54秒前
岳小龙完成签到 ,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
可爱的函函应助丁丁采纳,获得10
1分钟前
1分钟前
Tsingyuan发布了新的文献求助10
1分钟前
换胃思考完成签到 ,获得积分10
1分钟前
1分钟前
我是老大应助kke采纳,获得10
1分钟前
lena发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sdfzaq1完成签到,获得积分10
1分钟前
niko发布了新的文献求助10
1分钟前
丁丁发布了新的文献求助10
1分钟前
sdfzaq1发布了新的文献求助10
1分钟前
完美世界应助lena采纳,获得10
1分钟前
哈哈完成签到 ,获得积分10
1分钟前
完美世界应助丁丁采纳,获得10
1分钟前
高分求助中
Un calendrier babylonien des travaux, des signes et des mois: Séries iqqur îpuš 1036
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2545225
求助须知:如何正确求助?哪些是违规求助? 2175592
关于积分的说明 5600078
捐赠科研通 1896314
什么是DOI,文献DOI怎么找? 946171
版权声明 565327
科研通“疑难数据库(出版商)”最低求助积分说明 503541