A proof of the instability of AdS for the Einstein-null dust system with an inner mirror

爱因斯坦 猜想 物理 共形映射 标量场 空(SQL) 爱因斯坦场方程 不稳定性 测地线 数学物理 数学分析 数学 纯数学 量子力学 计算机科学 数据库
作者
Georgios Moschidis
出处
期刊:Analysis & PDE [Mathematical Sciences Publishers]
卷期号:13 (6): 1671-1754 被引量:39
标识
DOI:10.2140/apde.2020.13.1671
摘要

In 2006, Dafermos and Holzegel [19, 18] formulated the so-called AdS instability conjecture, stating that there exist arbitrarily small perturbations to AdS initial data which, under evolution by the Einstein vacuum equations for Λ < 0 with reflecting boundary conditions on conformal infinity I, lead to the formation of black holes.The numerical study of this conjecture in the simpler setting of the spherically symmetric Einstein-scalar field system was initiated by Bizon and Rostworowski [8], followed by a vast number of numerical and heuristic works by several authors.In this paper, we provide the first rigorous proof of the AdS instability conjecture in the simplest possible setting, namely for the spherically symmetric Einstein-massless Vlasov system, in the case when the Vlasov field is moreover supported only on radial geodesics.This system is equivalent to the Einstein-null dust system, allowing for both ingoing and outgoing dust.In order to overcome the break down of this system occuring once the null dust reaches the centre r = 0, we place an inner mirror at r = r0 > 0 and study the evolution of this system on the exterior domain {r ≥ r0}.The structure of the maximal development and the Cauchy stability properties of general initial data in this setting are studied in our companion paper [48].The statement of the main theorem is as follows: We construct a family of mirror radii r0ε > 0 and initial data Sε, ε ∈ (0, 1], converging, as ε → 0, to the AdS initial data S0 in a suitable norm, such that, for any ε ∈ (0, 1], the maximal development (Mε, gε) of Sε contains a black hole region.Our proof is based on purely physical space arguments and involves the arrangement of the null dust into a large number of beams which are successively reflected off {r = r0ε} and I, in a configuration that forces the energy of a certain beam to increase after each successive pair of reflections.As ε → 0, the number of reflections before a black hole is formed necessarily goes to +∞.We expect that this instability mechanism can be applied to the case of more general matter fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
豆子完成签到 ,获得积分10
1秒前
2秒前
乐乐应助了了采纳,获得10
2秒前
2秒前
caixiayin发布了新的文献求助10
5秒前
zyqsn发布了新的文献求助10
5秒前
君之发布了新的文献求助10
6秒前
fuzh发布了新的文献求助10
6秒前
张浩洋完成签到,获得积分10
7秒前
三金完成签到,获得积分10
8秒前
9秒前
wxy发布了新的文献求助10
9秒前
10秒前
华仔应助纯真新筠采纳,获得10
11秒前
11秒前
12秒前
YaoZhang完成签到 ,获得积分10
13秒前
搜集达人应助欣欣采纳,获得10
13秒前
了了发布了新的文献求助10
14秒前
wang发布了新的文献求助30
15秒前
linlin发布了新的文献求助10
15秒前
lsw完成签到,获得积分10
16秒前
大佬虎发布了新的文献求助10
17秒前
活力毛豆完成签到 ,获得积分10
19秒前
19秒前
星辰大海应助dodo采纳,获得10
21秒前
21秒前
君之完成签到,获得积分10
22秒前
22秒前
郭忠照发布了新的文献求助10
22秒前
jin发布了新的文献求助10
23秒前
了了完成签到,获得积分10
24秒前
小尚发布了新的文献求助10
26秒前
长孙半芹发布了新的文献求助20
28秒前
浮华发布了新的文献求助30
28秒前
29秒前
linlin完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063429
求助须知:如何正确求助?哪些是违规求助? 3601849
关于积分的说明 11439157
捐赠科研通 3324957
什么是DOI,文献DOI怎么找? 1827906
邀请新用户注册赠送积分活动 898422
科研通“疑难数据库(出版商)”最低求助积分说明 819026