Machine learning for the diagnosis of pulmonary hypertension

肺楔压 医学 肺动脉 金标准(测试) 曲线下面积 肺动脉高压 内科学 心脏病学 诊断试验中的似然比 接收机工作特性
作者
Fubao Zhu,Dongxu Xu,Yan‐Yun Liu,Kun Lou,Zhuo He,Hao Zhang,Yanhui Sheng,Rong Yang,Xinli Li,Xiangqing Kong,Haifeng Zhang,Weihua Zhou
出处
期刊:Kardiologiya [APO Society of Specialists in Heart Failure]
卷期号:60 (6): 96-101 被引量:8
标识
DOI:10.18087/cardio.2020.6.n953
摘要

Objective This paper aims to investigate whether machine learning (ML) can be used to predict the state of pulmonary hypertension (PH), including pre-capillary and post-capillary, from echocardiographic data.Methods Two hundred and seventy-five patients with PH who underwent both echocardiography and right heart catheterization were included in the study. Mean pulmonary artery pressure, pulmonary artery wedge pressure measured by right heart catheterization were used as criteria for judging pre-capillary PH and post-capillary PH. Thirteen echocardiographic indicators were used to predict whether the PH was pre-capillary or post-capillary. Nine ML models were used to make predictions. Accuracy was used as the primary reference standard, and the performance of classification model is observed in conjunction with area under curve (AUC), specificity (Sp), sensitivity (Se), Positive Prediction Value (PPV), Negative Prediction Value (NPV), Positive Likelihood Ratio (PLR) and Negative Likelihood Ratio (NLR) and other assessment protocols.Results By comparing the accuracy (ACC), recall rate (Recall) and other model effect evaluation index of the classification under the nine ML models, it can be found that the ML model can effectively identify the pre-capillary PH and the post-capillary PH. LogitBoost performed best in nine ML models (ACC=0.87, Recall=0.83, F1score=0.85, AUC=0.87, Se=0.90, NPV=0.88, PPV=0.87, PLR=8.61 and NLR=0.18, AUC=0.83), it showed good results in identification of the pre-capillary PH (ACC=0.83, Recall=0.87, F-score=0.85); Post-vascular PH (ACC=0.90, Recall=0.88, F-score=0.89). Decision Tree (ACC=0.75, Recall=0.77, F1score=0.78, AUC=0.75, Se=0.72, NPV=0.78, PPV=0.77, PLR=3.66 and NLR=0.29, AUC=0.79) performed worst, and the accuracy of the other seven models was greater than 0.82.Conclusion The classification results of the nine ML models in this paper indicate that the ML method can effectively identify the pre-capillary PH and post-capillary PH from echocardiographic data. Compared with medical diagnosis, ML methods can distinguish between pre-capillary PH and the post-capillary PH under non-invasive conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Osprey_Lee完成签到,获得积分10
2秒前
2秒前
4秒前
6秒前
Osprey_Lee发布了新的文献求助10
7秒前
Shirely发布了新的文献求助10
8秒前
Lucas应助HiNDT采纳,获得10
8秒前
9秒前
iperper发布了新的文献求助10
9秒前
洛FEI完成签到,获得积分10
9秒前
张军完成签到,获得积分20
10秒前
nothing完成签到 ,获得积分10
11秒前
11秒前
zcl发布了新的文献求助10
15秒前
洛FEI发布了新的文献求助10
15秒前
大媛媛完成签到,获得积分10
16秒前
大模型应助chenyu采纳,获得30
17秒前
18秒前
平常的大地完成签到,获得积分10
20秒前
矮小的凡阳完成签到 ,获得积分10
20秒前
能干的阿拉蕾完成签到 ,获得积分10
23秒前
24秒前
30秒前
JW完成签到,获得积分10
33秒前
34秒前
666完成签到 ,获得积分10
35秒前
36秒前
HEAR应助chenzy1987采纳,获得10
38秒前
40秒前
桐桐应助洛FEI采纳,获得10
41秒前
HiNDT发布了新的文献求助10
42秒前
光亮面包发布了新的文献求助10
46秒前
脑洞疼应助LCct采纳,获得10
48秒前
50秒前
52秒前
54秒前
chenyu发布了新的文献求助30
55秒前
大风车发布了新的文献求助10
58秒前
58秒前
LCct发布了新的文献求助10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776990
求助须知:如何正确求助?哪些是违规求助? 3322387
关于积分的说明 10210034
捐赠科研通 3037721
什么是DOI,文献DOI怎么找? 1666843
邀请新用户注册赠送积分活动 797700
科研通“疑难数据库(出版商)”最低求助积分说明 758012