New method for dynamic mode decomposition of flows over moving structures based on machine learning (hybrid dynamic mode decomposition)

模式(计算机接口) 希尔伯特-黄变换 计算机科学 分解 分解法(排队论) 算法 理论(学习稳定性) 非线性系统
作者
Mohammad Hossein Naderi,Hamidreza Eivazi,Vahid Esfahanian
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:31 (12) 被引量:24
标识
DOI:10.1063/1.5128341
摘要

Dynamic Mode Decomposition (DMD) is a data-driven reduced order method, which is known for its power to capture the basic features of dynamical systems. In fluid dynamics, modal analysis of unsteady fluid flows over moving structures is significant in terms of state estimation and control. However, the underlying algorithm of the DMD requires a fixed spatial domain, which is an obstacle for applying the DMD on the numerically investigated problems using dynamic meshes. In this study, a hybrid method called Hybrid Dynamic Mode Decomposition (HDMD) is presented for analysis of unsteady fluid flows over moving structures based on the DMD and machine learning. According to the assessment of several data interpolation methods, the K-nearest neighbor algorithm is employed for the interpolation of the numerical data from dynamic meshes at each time step to a single stationary grid. Three different case studies (rotating cylinder, oscillating airfoil, and Savonius wind turbine) are assessed to ensure the validity of the proposed method. Minimum mean R2 equal to 0.92 has been obtained for all of the mentioned cases, indicating the robustness of the HDMD algorithm for a variety of fluid flow simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrChen发布了新的文献求助10
2秒前
Lareina发布了新的文献求助10
3秒前
徐徐完成签到,获得积分10
5秒前
6秒前
GRG完成签到 ,获得积分10
6秒前
Yue完成签到 ,获得积分20
8秒前
岑夜南发布了新的文献求助10
10秒前
xierwalasi完成签到,获得积分10
11秒前
12秒前
14秒前
Yue关注了科研通微信公众号
14秒前
YYYYYY完成签到,获得积分10
17秒前
风趣清炎完成签到,获得积分20
19秒前
19秒前
开心的p发布了新的文献求助10
20秒前
酷波er应助刘燕采纳,获得10
20秒前
iNk应助微渺采纳,获得20
21秒前
云雨发布了新的文献求助10
21秒前
心心发布了新的文献求助10
22秒前
25秒前
zoey完成签到 ,获得积分10
25秒前
开心的p完成签到,获得积分10
25秒前
金字塔完成签到,获得积分10
26秒前
在水一方应助song采纳,获得10
28秒前
30秒前
32秒前
欣欣杨完成签到,获得积分20
33秒前
李健应助xiaoyu采纳,获得10
34秒前
l37u2n应助含糊的书兰采纳,获得10
34秒前
刘燕发布了新的文献求助10
35秒前
合适问安完成签到 ,获得积分10
35秒前
谢谢完成签到,获得积分10
37秒前
37秒前
38秒前
41秒前
42秒前
Johnspeed发布了新的文献求助10
42秒前
wu_shang完成签到,获得积分10
42秒前
huichuanyin完成签到 ,获得积分10
43秒前
JamesPei应助yuyu采纳,获得10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838