Observing crystal nucleation in four dimensions using atomic electron tomography

成核 化学物理 结晶 分子动力学 Crystal(编程语言) 材料科学 相(物质) 物理 化学 热力学 计算化学 计算机科学 量子力学 程序设计语言
作者
Jihan Zhou,Yongsoo Yang,Yao Yang,Dennis Kim,Andrew Yuan,Xuezeng Tian,Colin Ophus,Fan Sun,Andreas K. Schmid,Michael H. Nathanson,Hendrik Heinz,Qi An,Hao Zeng,Peter Ercius,Jianwei Miao
出处
期刊:Nature [Nature Portfolio]
卷期号:570 (7762): 500-503 被引量:255
标识
DOI:10.1038/s41586-019-1317-x
摘要

Nucleation plays a critical role in many physical and biological phenomena that range from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases1-3. However, nucleation is a challenging process to study experimentally, especially in its early stages, when several atoms or molecules start to form a new phase from a parent phase. A number of experimental and computational methods have been used to investigate nucleation processes4-17, but experimental determination of the three-dimensional atomic structure and the dynamics of early-stage nuclei has been unachievable. Here we use atomic electron tomography to study early-stage nucleation in four dimensions (that is, including time) at atomic resolution. Using FePt nanoparticles as a model system, we find that early-stage nuclei are irregularly shaped, each has a core of one to a few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations are corroborated by molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. Our experimental and molecular dynamics results indicate that a theory beyond classical nucleation theory1,2,18 is needed to describe early-stage nucleation at the atomic scale. We anticipate that the reported approach will open the door to the study of many fundamental problems in materials science, nanoscience, condensed matter physics and chemistry, such as phase transition, atomic diffusion, grain boundary dynamics, interface motion, defect dynamics and surface reconstruction with four-dimensional atomic resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
健壮小天鹅完成签到,获得积分10
7秒前
英姑应助正值清白之年采纳,获得10
8秒前
coin完成签到,获得积分10
9秒前
zzz发布了新的文献求助10
10秒前
szcyxzh完成签到,获得积分10
10秒前
11秒前
bkagyin应助lanadalray采纳,获得10
14秒前
骨科小手发布了新的文献求助10
14秒前
活泼的雪枫完成签到,获得积分10
15秒前
15秒前
动漫大师发布了新的文献求助10
17秒前
18秒前
大个应助zzz采纳,获得10
19秒前
落叶的季节完成签到,获得积分10
19秒前
机灵的颜演完成签到 ,获得积分10
21秒前
骨科小手完成签到,获得积分10
21秒前
22秒前
艺术家发布了新的文献求助10
23秒前
24秒前
好远加身发布了新的文献求助10
24秒前
decade_32完成签到 ,获得积分10
25秒前
务实思烟发布了新的文献求助10
26秒前
jenningseastera应助扎心采纳,获得10
27秒前
jjgogogog完成签到,获得积分10
28秒前
isfj发布了新的文献求助20
29秒前
12umi发布了新的文献求助10
29秒前
SciGPT应助周爱李采纳,获得10
30秒前
37秒前
CodeCraft应助刘良烽采纳,获得10
38秒前
38秒前
40秒前
ltc完成签到,获得积分10
40秒前
LULU完成签到,获得积分10
41秒前
42秒前
好远加身完成签到,获得积分10
42秒前
务实思烟完成签到,获得积分10
42秒前
小全发布了新的文献求助10
42秒前
不知道发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782058
求助须知:如何正确求助?哪些是违规求助? 3327527
关于积分的说明 10232030
捐赠科研通 3042501
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799539
科研通“疑难数据库(出版商)”最低求助积分说明 758825