Comparison of prediction models with radiological semantic features and radiomics in lung cancer diagnosis of the pulmonary nodules: a case-control study

医学 放射性武器 介入放射学 肺癌 无线电技术 放射科 神经组阅片室 超声波 内科学 神经学 精神科
作者
Wei Wu,Larry A. Pierce,Yuzheng Zhang,Sudhakar Pipavath,Timothy W. Randolph,Kristin J. Lastwika,Paul D. Lampe,A. McGarry Houghton,Haining Liu,Liming Xia,Paul E. Kinahan
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:29 (11): 6100-6108 被引量:49
标识
DOI:10.1007/s00330-019-06213-9
摘要

To compare the ability of radiological semantic and quantitative texture features in lung cancer diagnosis of pulmonary nodules. A total of N = 121 subjects with confirmed non-small-cell lung cancer were matched with 117 controls based on age and gender. Radiological semantic and quantitative texture features were extracted from CT images with or without contrast enhancement. Three different models were compared using LASSO logistic regression: “CS” using clinical and semantic variables, “T” using texture features, and “CST” using clinical, semantic, and texture variables. For each model, we performed 100 trials of fivefold cross-validation and the average receiver operating curve was accessed. The AUC of the cross-validation study (AUCCV) was calculated together with its 95% confidence interval. The AUCCV (and 95% confidence interval) for models T, CS, and CST was 0.85 (0.71–0.96), 0.88 (0.77–0.96), and 0.88 (0.77–0.97), respectively. After separating the data into two groups with or without contrast enhancement, the AUC (without cross-validation) of the model T was 0.86 both for images with and without contrast enhancement, suggesting that contrast enhancement did not impact the utility of texture analysis. The models with semantic and texture features provided cross-validated AUCs of 0.85–0.88 for classification of benign versus cancerous nodules, showing potential in aiding the management of patients. • Pretest probability of cancer can aid and direct the physician in the diagnosis and management of pulmonary nodules in a cost-effective way. • Semantic features (qualitative features reported by radiologists to characterize lung lesions) and radiomic (e.g., texture) features can be extracted from CT images. • Input of these variables into a model can generate a pretest likelihood of cancer to aid clinical decision and management of pulmonary nodules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂的皮卡丘完成签到 ,获得积分10
2秒前
hehe完成签到,获得积分10
2秒前
自然的南露完成签到 ,获得积分10
3秒前
仁爱的寻凝完成签到,获得积分20
4秒前
西瓜应助ohenry采纳,获得10
6秒前
深情安青应助花誓lydia采纳,获得10
8秒前
烟花应助仁爱的寻凝采纳,获得10
8秒前
释棱完成签到 ,获得积分10
9秒前
小马发布了新的文献求助10
9秒前
科研通AI5应助山淮采纳,获得10
9秒前
万能图书馆应助乱武采纳,获得10
10秒前
望北完成签到 ,获得积分10
10秒前
10秒前
kaka完成签到 ,获得积分10
12秒前
13秒前
13秒前
大胆砖头发布了新的文献求助10
15秒前
18秒前
隐形曼青应助祁南松采纳,获得10
18秒前
wuhanfei发布了新的文献求助10
18秒前
19秒前
大意的觅云完成签到,获得积分10
21秒前
liu完成签到,获得积分10
21秒前
22秒前
花誓lydia发布了新的文献求助10
22秒前
无情的宛菡完成签到 ,获得积分10
24秒前
英俊的铭应助JoySue采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得20
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
99关注了科研通微信公众号
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得50
27秒前
27秒前
jjwen完成签到,获得积分10
28秒前
乐乐应助lxl采纳,获得10
29秒前
Zyl完成签到 ,获得积分10
29秒前
30秒前
郑蒸日上完成签到,获得积分10
31秒前
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732