Evaluating a New International Risk-Prediction Tool in IgA Nephropathy

医学 四分位间距 肾病 内科学 肾脏疾病 队列 比例危险模型 蛋白尿 肾功能 肿瘤科 内分泌学 糖尿病
作者
Sean J. Barbour,Rosanna Coppo,Hong Zhang,Zhihong Liu,Yusuke Suzuki,Keiichi Matsuzaki,Ritsuko Katafuchi,Lee Er,Gabriela Espino-Hernández,S. Joseph Kim,Heather N. Reich,John Feehally,Daniel Cattran
出处
期刊:JAMA Internal Medicine [American Medical Association]
卷期号:179 (7): 942-942 被引量:353
标识
DOI:10.1001/jamainternmed.2019.0600
摘要

Importance

Although IgA nephropathy (IgAN) is the most common glomerulonephritis in the world, there is no validated tool to predict disease progression. This limits patient-specific risk stratification and treatment decisions, clinical trial recruitment, and biomarker validation.

Objective

To derive and externally validate a prediction model for disease progression in IgAN that can be applied at the time of kidney biopsy in multiple ethnic groups worldwide.

Design, Setting, and Participants

We derived and externally validated a prediction model using clinical and histologic risk factors that are readily available in clinical practice. Large, multi-ethnic cohorts of adults with biopsy-proven IgAN were included from Europe, North America, China, and Japan.

Main Outcomes and Measures

Cox proportional hazards models were used to analyze the risk of a 50% decline in estimated glomerular filtration rate (eGFR) or end-stage kidney disease, and were evaluated using theR2Dmeasure, Akaike information criterion (AIC), C statistic, continuous net reclassification improvement (NRI), integrated discrimination improvement (IDI), and calibration plots.

Results

The study included 3927 patients; mean age, 35.4 (interquartile range, 28.0-45.4) years; and 2173 (55.3%) were men. The following prediction models were created in a derivation cohort of 2781 patients: a clinical model that included eGFR, blood pressure, and proteinuria at biopsy; and 2 full models that also contained the MEST histologic score, age, medication use, and either racial/ethnic characteristics (white, Japanese, or Chinese) or no racial/ethnic characteristics, to allow application in other ethnic groups. Compared with the clinical model, the full models with and without race/ethnicity had betterR2D(26.3% and 25.3%, respectively, vs 20.3%) and AIC (6338 and 6379, respectively, vs 6485), significant increases in C statistic from 0.78 to 0.82 and 0.81, respectively (ΔC, 0.04; 95% CI, 0.03-0.04 and ΔC, 0.03; 95% CI, 0.02-0.03, respectively), and significant improvement in reclassification as assessed by the NRI (0.18; 95% CI, 0.07-0.29 and 0.51; 95% CI, 0.39-0.62, respectively) and IDI (0.07; 95% CI, 0.06-0.08 and 0.06; 95% CI, 0.05-0.06, respectively). External validation was performed in a cohort of 1146 patients. For both full models, the C statistics (0.82; 95% CI, 0.81-0.83 with race/ethnicity; 0.81; 95% CI, 0.80-0.82 without race/ethnicity) andR2D(both 35.3%) were similar or better than in the validation cohort, with excellent calibration.

Conclusions and Relevance

In this study, the 2 full prediction models were shown to be accurate and validated methods for predicting disease progression and patient risk stratification in IgAN in multi-ethnic cohorts, with additional applications to clinical trial design and biomarker research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sjingjia完成签到,获得积分10
刚刚
既白完成签到 ,获得积分10
3秒前
自信项链发布了新的文献求助10
4秒前
大气的火龙果完成签到 ,获得积分10
10秒前
10秒前
11秒前
程新亮完成签到 ,获得积分10
12秒前
Yiling完成签到,获得积分10
16秒前
catyew完成签到 ,获得积分10
17秒前
老甘完成签到 ,获得积分10
17秒前
Catalysis123发布了新的文献求助10
18秒前
勤劳善良的胖蜜蜂完成签到 ,获得积分10
21秒前
22秒前
完美的书雁完成签到 ,获得积分10
25秒前
顺利兰完成签到 ,获得积分10
28秒前
BUAAzmt发布了新的文献求助10
29秒前
菜菜完成签到,获得积分10
32秒前
xmhxpz完成签到,获得积分10
33秒前
喜悦的香之完成签到 ,获得积分10
35秒前
Catalysis123完成签到,获得积分10
35秒前
电致阿光完成签到,获得积分10
37秒前
畅快的刚完成签到,获得积分10
38秒前
JayL完成签到,获得积分10
40秒前
桐桐应助火花采纳,获得10
44秒前
果粒儿完成签到 ,获得积分10
47秒前
wrr应助加减乘除采纳,获得10
48秒前
心想事成完成签到 ,获得积分10
54秒前
天真无招完成签到 ,获得积分10
54秒前
青栞完成签到,获得积分10
55秒前
明朗完成签到 ,获得积分10
57秒前
短巷完成签到 ,获得积分10
58秒前
洁净山灵完成签到,获得积分10
58秒前
风信子完成签到,获得积分10
59秒前
李沐唅完成签到 ,获得积分10
1分钟前
酷酷的如天完成签到,获得积分10
1分钟前
1分钟前
Jenny应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777749
求助须知:如何正确求助?哪些是违规求助? 3323285
关于积分的说明 10213393
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275