Corticosteroid Randomization after Significant Head Injury and International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury Models Compared with a Machine Learning-Based Predictive Model from Tanzania

医学 创伤性脑损伤 急诊分诊台 撞车 背景(考古学) 接收机工作特性 格拉斯哥结局量表 介绍 头部受伤 布里氏评分 急诊医学 临床试验 毒物控制 机器学习 外科 内科学 计算机科学 家庭医学 精神科 程序设计语言 古生物学 生物
作者
Cyrus Elahi,Syed M. Adil,Francis Sakita,Blandina T. Mmbaga,Thiago Augusto Hernandes Rocha,Anthony T. Fuller,Michael M. Haglund,João Ricardo Nickenig Vissoci,Catherine A. Staton
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert, Inc.]
卷期号:39 (1-2): 151-158 被引量:6
标识
DOI:10.1089/neu.2020.7483
摘要

Hospitals in low- and middle-income countries (LMICs) could benefit from decision support technologies to reduce time to triage, diagnosis, and surgery for patients with traumatic brain injury (TBI). Corticosteroid Randomization after Significant Head Injury (CRASH) and International Mission for Prognosis and Clinical Trials in Traumatic Brain Injury (IMPACT) are robust examples of TBI prognostic models, although they have yet to be validated in Sub-Saharan Africa (SSA). Moreover, machine learning and improved data quality in LMICs provide an opportunity to develop context-specific, and potentially more accurate, prognostic models. We aim to externally validate CRASH and IMPACT on our TBI registry and compare their performances to that of the locally derived model (from the Kilimanjaro Christian Medical Center [KCMC]). We developed a machine learning-based prognostic model from a TBI registry collected at a regional referral hospital in Moshi, Tanzania. We also used the core CRASH and IMPACT online risk calculators to generate risk scores for each patient. We compared the discrimination (area under the curve [AUC]) and calibration before and after Platt scaling (Brier, Hosmer-Lemeshow Test, and calibration plots) for CRASH, IMPACT, and the KCMC model. The outcome of interest was unfavorable in-hospital outcome defined as a Glasgow Outcome Scale score of 1-3. There were 2972 patients included in the TBI registry, of whom 11% had an unfavorable outcome. The AUCs for the KCMC model, CRASH, and IMPACT were 0.919, 0.876, and 0.821, respectively. Prior to Platt scaling, CRASH was the best calibrated model (χ2 = 68.1) followed by IMPACT (χ2 = 380.9) and KCMC (χ2 = 1025.6). We provide the first SSA validation of the core CRASH and IMPACT models. The KCMC model had better discrimination than either of these. CRASH had the best calibration, although all model predictions could be successfully calibrated. The top performing models, KCMC and CRASH, were both developed using LMIC data, suggesting that locally derived models may outperform imported ones from different contexts of care. Further work is needed to externally validate the KCMC model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Joshua完成签到,获得积分10
2秒前
研友_VZG7GZ应助DouBo采纳,获得10
2秒前
3秒前
英姑应助YaoHui采纳,获得10
3秒前
zho发布了新的文献求助10
3秒前
zxr发布了新的文献求助10
5秒前
汉堡包应助与山采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
8秒前
10秒前
12秒前
楚舜华完成签到,获得积分10
13秒前
13秒前
姜夔完成签到,获得积分10
14秒前
14秒前
tkurds发布了新的文献求助10
15秒前
害羞的山晴完成签到,获得积分10
15秒前
orixero应助算了飞采纳,获得30
16秒前
16秒前
华仔应助言言采纳,获得10
17秒前
17秒前
18秒前
zfh1341发布了新的文献求助10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
19秒前
DouBo发布了新的文献求助10
19秒前
19秒前
在水一方应助Petrichor采纳,获得10
22秒前
与山发布了新的文献求助10
23秒前
虚幻花卷发布了新的文献求助10
23秒前
领导范儿应助eyou采纳,获得10
23秒前
ccc完成签到 ,获得积分10
24秒前
lizhiqian2024发布了新的文献求助30
24秒前
24秒前
潇洒的平松完成签到,获得积分10
25秒前
26秒前
深情安青应助鲜艳的新梅采纳,获得10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784451
求助须知:如何正确求助?哪些是违规求助? 3329582
关于积分的说明 10242685
捐赠科研通 3044992
什么是DOI,文献DOI怎么找? 1671561
邀请新用户注册赠送积分活动 800396
科研通“疑难数据库(出版商)”最低求助积分说明 759391