光化学
激进的
材料科学
光动力疗法
活性氧
辐照
光敏剂
可见光谱
氧气
光子上转换
光催化
纳米技术
化学
兴奋剂
光电子学
催化作用
有机化学
物理
生物化学
核物理学
作者
Yixin Chen,Huijing Xiang,Shangwen Zhuang,Yujia Shen,Yu Chen,Shouxin Zhang
标识
DOI:10.1002/adma.202100129
摘要
The oxygen-dependent nature and limited penetration capacity of visible light render the low efficiency of photodynamic therapy in hypoxic and deep-seated tumors. Therefore, the development of oxygen-free photoactivated chemotherapy (PACT) to generate cytotoxic reactive oxygen species by near-IR (NIR) light-cleavable photocages is in high demand. Here, an oxygen-irrelevant PACT strategy based on NIR light-triggered hydroxyl radicals (•OH) generation is developed for free-radical nanotherapy. Blebbistatin-loaded upconversion of mesoporous silica nanoparticles (UCSNs-B) is established to facilitate the high loading efficiency of blebbistatin and implement the efficient transformation of NIR light into blue light for unprecedented direct photorelease of oxygen-independent •OH. Under NIR laser irradiation, UCSNs-B converted NIR light into blue light, thus enabling the photocleavage of blebbistatin to induce the burst of •OH. The •OH burst under NIR laser irradiation further induces cancer cell apoptosis and significant suppression of hypoxic tumors. In addition, the gadolinium ion (Gd3+ )-doped UCSNs-B are used as contrast agents in magnetic resonance imaging to facilitate real-time monitoring of the therapeutic processes. This study effectively demonstrates that the UCSNs-B act as NIR light-triggered photocages to facilitate oxygen-irrelevant •OH bursts, thus providing insights into the development of efficient PACT nanoagents for cancer treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI