清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion

计算机科学 维数之咒 生成对抗网络 生成语法 对抗制 人工智能 深度学习
作者
Steve Kench,Samuel J. Cooper
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (4): 299-305 被引量:181
标识
DOI:10.1038/s42256-021-00322-1
摘要

Generative adversarial networks (GANs) can be trained to generate three-dimensional (3D) image data, which are useful for design optimization. However, this conventionally requires 3D training data, which are challenging to obtain. Two-dimensional (2D) imaging techniques tend to be faster, higher resolution, better at phase identification and more widely available. Here we introduce a GAN architecture, SliceGAN, that is able to synthesize high-fidelity 3D datasets using a single representative 2D image. This is especially relevant for the task of material microstructure generation, as a cross-sectional micrograph can contain sufficient information to statistically reconstruct 3D samples. Our architecture implements the concept of uniform information density, which ensures both that generated volumes are equally high quality at all points in space and that arbitrarily large volumes can be generated. SliceGAN has been successfully trained on a diverse set of materials, demonstrating the widespread applicability of this tool. The quality of generated micrographs is shown through a statistical comparison of synthetic and real datasets of a battery electrode in terms of key microstructural metrics. Finally, we find that the generation time for a 108 voxel volume is on the order of a few seconds, yielding a path for future studies into high-throughput microstructural optimization. A generative approach called SliceGAN is demonstrated that can construct complex three-dimensional (3D) images from representative two-dimensional (2D) image examples. This is a promising approach in particular for studying microstructured materials where acquiring good-quality 3D data is challenging; 3D datasets can be created with SliceGAN, making use of high-quality 2D imaging techniques that are widely available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
13秒前
huvy完成签到 ,获得积分0
1分钟前
yi完成签到,获得积分10
1分钟前
别闹闹完成签到 ,获得积分10
2分钟前
2分钟前
zhuanghj5发布了新的文献求助10
2分钟前
zhuanghj5完成签到 ,获得积分10
2分钟前
丘比特应助旷野采纳,获得10
2分钟前
李振博完成签到 ,获得积分10
3分钟前
3分钟前
好运连连完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
111完成签到 ,获得积分10
4分钟前
斯文的天奇完成签到 ,获得积分10
4分钟前
4分钟前
naczx完成签到,获得积分0
4分钟前
铅笔995完成签到,获得积分10
5分钟前
liyanglin完成签到 ,获得积分10
5分钟前
Jayzie完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
旷野发布了新的文献求助10
6分钟前
沉沉完成签到 ,获得积分0
6分钟前
旷野完成签到,获得积分10
6分钟前
muriel完成签到,获得积分10
6分钟前
6分钟前
6分钟前
zjx完成签到,获得积分10
8分钟前
8分钟前
jason完成签到 ,获得积分10
8分钟前
自强不息完成签到 ,获得积分10
8分钟前
9分钟前
科目三应助糊涂的清醒者采纳,获得10
9分钟前
9分钟前
9分钟前
研友完成签到 ,获得积分10
9分钟前
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234416
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799698
科研通“疑难数据库(出版商)”最低求助积分说明 758994