DCPR-GAN: Dental Crown Prosthesis Restoration Using Two-Stage Generative Adversarial Networks

牙冠(牙科) 计算机科学 人工智能 咀嚼力 口腔正畸科 牙科 模式识别(心理学) 计算机视觉 医学
作者
Sukun Tian,Miaohui Wang,Ning Dai,Haifeng Ma,Linlin Li,Luca Fiorenza,Yuchun Sun,Yangmin Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 151-160 被引量:72
标识
DOI:10.1109/jbhi.2021.3119394
摘要

Restoring the correct masticatory function of broken teeth is the basis of dental crown prosthesis rehabilitation. However, it is a challenging task primarily due to the complex and personalized morphology of the occlusal surface. In this article, we address this problem by designing a new two-stage generative adversarial network (GAN) to reconstruct a dental crown surface in the data-driven perspective. Specifically, in the first stage, a conditional GAN (CGAN) is designed to learn the inherent relationship between the defective tooth and the target crown, which can solve the problem of the occlusal relationship restoration. In the second stage, an improved CGAN is further devised by considering an occlusal groove parsing network (GroNet) and an occlusal fingerprint constraint to enforce the generator to enrich the functional characteristics of the occlusal surface. Experimental results demonstrate that the proposed framework significantly outperforms the state-of-the-art deep learning methods in functional occlusal surface reconstruction using a real-world patient database. Moreover, the standard deviation (SD) and root mean square (RMS) between the generated occlusal surface and the target crown calculated by our method are both less than 0.161 mm. Importantly, the designed dental crown have enough anatomical morphology and higher clinical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
平淡映易发布了新的文献求助10
2秒前
小猪吹风完成签到 ,获得积分10
2秒前
脑洞疼应助李星翰采纳,获得10
4秒前
5秒前
酷波er应助欢呼妙柏采纳,获得10
6秒前
依依完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
YYxz发布了新的文献求助10
7秒前
all发布了新的文献求助10
8秒前
酷炫的紫山完成签到,获得积分10
8秒前
JABBA发布了新的文献求助10
9秒前
10秒前
10秒前
suki完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
汉堡包应助百里秋采纳,获得10
12秒前
13秒前
faye发布了新的文献求助10
15秒前
znn发布了新的文献求助10
16秒前
lemon发布了新的文献求助10
16秒前
张真狗发布了新的文献求助10
17秒前
WWW发布了新的文献求助10
18秒前
18秒前
19秒前
wangg完成签到,获得积分20
21秒前
xiaozhouning完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
wangg发布了新的文献求助10
23秒前
Mr.Left发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
25秒前
简简完成签到,获得积分10
25秒前
思源应助自然思松采纳,获得10
25秒前
大个应助lemon采纳,获得10
26秒前
默然的歌完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4590387
求助须知:如何正确求助?哪些是违规求助? 4005223
关于积分的说明 12400588
捐赠科研通 3682352
什么是DOI,文献DOI怎么找? 2029593
邀请新用户注册赠送积分活动 1063073
科研通“疑难数据库(出版商)”最低求助积分说明 948633