钛镍合金
材料科学
形状记忆合金
图层(电子)
兴奋剂
二氧化钛
合金
氮气
钛合金
表层
冶金
复合材料
化学工程
化学
光电子学
有机化学
工程类
作者
M. Tarnowski,Justyna Witkowska,J. Morgiel,Witold Jakubowski,Bogdan Walkowiak,T. Borowski,T. Wierzchoń
出处
期刊:Materials
[Multidisciplinary Digital Publishing Institute]
日期:2021-03-23
卷期号:14 (6): 1575-1575
被引量:4
摘要
NiTi shape memory alloys are increasingly being used as bone and cardiac implants. The oxide layer of nanometric thickness spontaneously formed on their surface does not sufficiently protect from nickel transition into surrounding tissues, and its presence, even in a small amount, can be harmful to the human organism. In order to limit this disadvantageous phenomenon, there are several surface engineering techniques used, including oxidation methods. Due to the usually complex shapes of implants, one of the most prospective methods is low-temperature plasma oxidation. This article presents the role of cathode sputtering in the formation of a titanium dioxide surface layer, specifically rutile. The surface of the NiTi shape memory alloy was modified using low-temperature glow discharge plasma oxidation processes, which were carried out in two variants: oxidation using an argon + oxygen (80% vol.) reactive atmosphere and the less chemically active argon + air (80% vol.), but with a preliminary cathode sputtering process in the Ar + N2 (1:1) plasma. This paper presents the structure (STEM), chemical composition (EDS, SIMS), surface topography (optical profilometer, Atomic Force Microscopy-AFM) and antibacterial properties of nanocrystalline TiO2 diffusive surface layers. It is shown that prior cathodic sputtering in argon-nitrogen plasma almost doubled the thickness of the produced nitrogen-doped titanium dioxide layers despite using air instead of oxygen. The (TiOxNy)2 diffusive surface layer showed a high level of resistance to E. coli colonization in comparison with NiTi, which indicates the possibility of using this surface layer in the modification of NiTi implants' properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI