清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Quantification of Cognitive Function in Alzheimer’s Disease Based on Deep Learning

卷积(计算机科学) 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 节点(物理) 图形 可分离空间 特征提取 修剪 深度学习 理论计算机科学 数学 人工神经网络 数学分析 农学 结构工程 工程类 生物
作者
Yanxian He,Jun Wu,Li Zhou,Yi Chen,Fang Li,Hongjin Qian
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:15 被引量:10
标识
DOI:10.3389/fnins.2021.651920
摘要

Alzheimer disease (AD) is mainly manifested as insidious onset, chronic progressive cognitive decline and non-cognitive neuropsychiatric symptoms, which seriously affects the quality of life of the elderly and causes a very large burden on society and families. This paper uses graph theory to analyze the constructed brain network, and extracts the node degree, node efficiency, and node betweenness centrality parameters of the two modal brain networks. The T test method is used to analyze the difference of graph theory parameters between normal people and AD patients, and brain regions with significant differences in graph theory parameters are selected as brain network features. By analyzing the calculation principles of the conventional convolutional layer and the depth separable convolution unit, the computational complexity of them is compared. The depth separable convolution unit decomposes the traditional convolution process into spatial convolution for feature extraction and point convolution for feature combination, which greatly reduces the number of multiplication and addition operations in the convolution process, while still being able to obtain comparisons. Aiming at the special convolution structure of the depth separable convolution unit, this paper proposes a channel pruning method based on the convolution structure and explains its pruning process. Multimodal neuroimaging can provide complete information for the quantification of Alzheimer’s disease. This paper proposes a cascaded three-dimensional neural network framework based on single-modal and multi-modal images, using MRI and PET images to distinguish AD and MCI from normal samples. Multiple three-dimensional CNN networks are used to extract recognizable information in local image blocks. The high-level two-dimensional CNN network fuses multi-modal features and selects the features of discriminative regions to perform quantitative predictions on samples. The algorithm proposed in this paper can automatically extract and fuse the features of multi-modality and multi-regions layer by layer, and the visual analysis results show that the abnormally changed regions affected by Alzheimer’s disease provide important information for clinical quantification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助slayers采纳,获得10
1秒前
slayers完成签到,获得积分10
16秒前
小花排草应助科研通管家采纳,获得20
18秒前
鬼见愁应助阿里采纳,获得10
37秒前
方沅完成签到,获得积分10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
彩虹儿应助科研通管家采纳,获得10
2分钟前
整齐的灵竹完成签到 ,获得积分20
2分钟前
2分钟前
无感慢热完成签到 ,获得积分10
2分钟前
傲娇而又骄傲完成签到 ,获得积分10
2分钟前
jiangjiang完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
nine2652完成签到 ,获得积分10
3分钟前
3分钟前
Eatanicecube完成签到,获得积分10
4分钟前
火星的雪完成签到 ,获得积分0
4分钟前
fufufu123完成签到 ,获得积分10
5分钟前
飞翔的企鹅完成签到,获得积分10
5分钟前
顾城应助飞翔的企鹅采纳,获得10
5分钟前
5分钟前
矛头蝮应助tutu采纳,获得30
5分钟前
常有李完成签到,获得积分10
5分钟前
vbnn完成签到 ,获得积分10
6分钟前
FashionBoy应助科研通管家采纳,获得10
6分钟前
今后应助优美的剑愁采纳,获得10
6分钟前
DChen完成签到 ,获得积分10
6分钟前
涛1完成签到 ,获得积分10
6分钟前
6分钟前
tutu发布了新的文献求助10
6分钟前
7分钟前
夜雨完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
8分钟前
丰富的青梦完成签到,获得积分20
8分钟前
Jimmy完成签到 ,获得积分10
9分钟前
tutu发布了新的文献求助30
9分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184625
求助须知:如何正确求助?哪些是违规求助? 3720296
关于积分的说明 11723712
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864956
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058