Evaluation of dimensionality reduction methods for individual tree crown delineation using instance segmentation network and UAV multispectral imagery in urban forest

多光谱图像 主成分分析 降维 人工智能 模式识别(心理学) 计算机科学 树(集合论) 特征提取 分割 数学 数学分析
作者
Xiangshu Xi,Kai Xia,Yinhui Yang,Xiaochen Du,Hailin Feng
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106506-106506 被引量:36
标识
DOI:10.1016/j.compag.2021.106506
摘要

The diversity of features in urban forest poses challenges to the task of delineation individual tree crowns. Multispectral image helps to improve the accuracy of individual tree crown delineation. It is necessary to reduce the dimensionality of multispectral images, but which dimensionality reduction method is suitable for the individual tree crown task based on deep learning still needs further research. In this study, four dimensionality reduction methods (principal component analysis, independent component analysis, optimum index factor, standard false color composite) were used to reduce the dimensionality of multispectral images. The images after dimensionality reduction were made as dataset for network training. Two instance segmentation networks (BlendMask, Mask R-CNN) were used to delineate the ginkgo tree crowns of UAV multispectral images after dimensionality reduction in urban. The effect of dimensionality reduction methods on two networks was evaluated in detail. The result of experiments presented that the standard false color composite method obtained the best value with 60.0% in average precision, 95.3% in average precision (Intersection over Union = 0.5) and 70.8% in average recall. The feature extraction methods (principal component analysis, independent component analysis) showed a good performance in the simple plot, but failed in the dense plot. The band selection methods (optimum index factor, standard false color composite) were more stable than the feature extraction methods in both plots. This article provides an important reference for related researchers on the choice of dimensionality reduction methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zfd完成签到,获得积分10
刚刚
刚刚
文静完成签到,获得积分10
刚刚
小月岛完成签到,获得积分10
1秒前
1秒前
1秒前
热心市民应助张张采纳,获得10
1秒前
低温少年发布了新的文献求助10
1秒前
韩羽丰发布了新的文献求助10
2秒前
CHN完成签到,获得积分10
2秒前
Tethys发布了新的文献求助10
3秒前
3秒前
3秒前
小太阳完成签到,获得积分10
3秒前
科研通AI5应助蟹蟹采纳,获得10
4秒前
猪猪发布了新的文献求助10
4秒前
4秒前
b15966013195应助糊涂的不愁采纳,获得10
5秒前
5秒前
穆承羲关注了科研通微信公众号
6秒前
尔风完成签到,获得积分10
6秒前
6秒前
酷波er应助彩色鹰采纳,获得10
6秒前
doriseqin完成签到,获得积分10
7秒前
7秒前
8秒前
打打应助赏你半斤地瓜烧采纳,获得10
9秒前
wenze发布了新的文献求助20
9秒前
9秒前
lxiaok完成签到,获得积分10
9秒前
pu完成签到 ,获得积分10
10秒前
文献完成签到,获得积分20
11秒前
11秒前
李健的粉丝团团长应助ZRQ采纳,获得10
11秒前
个性的饼干完成签到,获得积分10
11秒前
小凯同学发布了新的文献求助10
11秒前
苗条白枫发布了新的文献求助10
12秒前
CodeCraft应助GWT采纳,获得10
12秒前
12秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805892
求助须知:如何正确求助?哪些是违规求助? 3350749
关于积分的说明 10350923
捐赠科研通 3066628
什么是DOI,文献DOI怎么找? 1684048
邀请新用户注册赠送积分活动 809244
科研通“疑难数据库(出版商)”最低求助积分说明 765425