Hierarchical Personalized Federated Learning for User Modeling

计算机科学 用户建模 用户信息 服务器 信息隐私 万维网 用户界面 信息系统 计算机安全 操作系统 电气工程 工程类
作者
Jinze Wu,Qi Liu,Zhenya Huang,Yuting Ning,Hao Wang,Enhong Chen,Jinfeng Yi,Bowen Zhou
标识
DOI:10.1145/3442381.3449926
摘要

User modeling aims to capture the latent characteristics of users from their behaviors, and is widely applied in numerous applications. Usually, centralized user modeling suffers from the risk of privacy leakage. Instead, federated user modeling expects to provide a secure multi-client collaboration for user modeling through federated learning. Existing federated learning methods are mainly designed for consistent clients, which cannot be directly applied to practical scenarios, where different clients usually store inconsistent user data. Therefore, it is a crucial demand to design an appropriate federated solution that can better adapt to user modeling tasks, and however, meets following critical challenges: 1) Statistical heterogeneity. The distributions of user data in different clients are not always independently identically distributed which leads to personalized clients; 2) Privacy heterogeneity. User data contains both public and private information, which have different levels of privacy. It means we should balance different information to be shared and protected; 3) Model heterogeneity. The local user models trained with client records are heterogeneous which need flexible aggregation in the server. In this paper, we propose a novel client-server architecture framework, namely Hierarchical Personalized Federated Learning (HPFL) to serve federated learning in user modeling with inconsistent clients. In the framework, we first define hierarchical information to finely partition the data with privacy heterogeneity. On this basis, the client trains a user model which contains different components designed for hierarchical information. Moreover, client processes a fine-grained personalized update strategy to update personalized user model for statistical heterogeneity. Correspondingly, the server completes a differentiated component aggregation strategy to flexibly aggregate heterogeneous user models in the case of privacy and model heterogeneity. Finally, we conduct extensive experiments on real-world datasets, which demonstrate the effectiveness of the HPFL framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强白玉完成签到,获得积分10
2秒前
可乐加冰完成签到,获得积分10
5秒前
shw完成签到,获得积分10
5秒前
高思博关注了科研通微信公众号
5秒前
正直夜安完成签到 ,获得积分10
9秒前
温暖的白枫完成签到,获得积分20
10秒前
LeafJin完成签到 ,获得积分10
12秒前
甜美坤完成签到 ,获得积分10
14秒前
19秒前
灵巧的飞雪完成签到 ,获得积分10
21秒前
凌兰完成签到 ,获得积分10
22秒前
VDC发布了新的文献求助10
22秒前
Hi_aloha发布了新的文献求助10
24秒前
27秒前
67完成签到 ,获得积分10
30秒前
31秒前
figure完成签到 ,获得积分10
31秒前
二重音发布了新的文献求助10
33秒前
李健应助小四喜采纳,获得10
34秒前
明理萃完成签到 ,获得积分10
34秒前
37秒前
38秒前
慕青应助勤奋的夏蓉采纳,获得10
38秒前
吴钰哲完成签到,获得积分10
42秒前
jbtjht发布了新的文献求助10
42秒前
轻松的鑫发布了新的文献求助10
43秒前
彭瞻完成签到 ,获得积分10
44秒前
周周完成签到,获得积分20
44秒前
hzhniubility完成签到,获得积分10
45秒前
45秒前
二重音完成签到,获得积分10
46秒前
47秒前
50秒前
烂漫之槐发布了新的文献求助10
51秒前
3237924531完成签到,获得积分10
52秒前
科研通AI5应助Hi_aloha采纳,获得10
52秒前
桐桐应助馅饼采纳,获得200
52秒前
可爱败发布了新的文献求助10
54秒前
思源应助麻生采纳,获得10
56秒前
茗姜发布了新的文献求助10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781287
求助须知:如何正确求助?哪些是违规求助? 3326814
关于积分的说明 10228352
捐赠科研通 3041803
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751