Mobile Target Coverage and Tracking on Drone-Be-Gone UAV Cyber-Physical Testbed

试验台 无人机 计算机科学 实时计算 航路点 杠杆(统计) 移动机器人 软件部署 聚类分析 机器人 人工智能 计算机网络 遗传学 生物 操作系统
作者
Mouhyemen Khan,Karel Heurtefeux,Amr Mohamed,Khaled A. Harras,Mohammad Mehedi Hassan
出处
期刊:IEEE Systems Journal [Institute of Electrical and Electronics Engineers]
卷期号:12 (4): 3485-3496 被引量:69
标识
DOI:10.1109/jsyst.2017.2777866
摘要

Mobile wireless sensor networks have been extensively deployed for enhancing environmental monitoring and surveillance. The availability of low-cost mobile robots equipped with a variety of sensors makes them promising in target coverage tasks. They are particularly suitable where quick, inexpensive, or nonlasting visual sensing solutions are required. In this paper, we consider the problem of low complexity target tracking to cover and follow moving targets using flying robots. We tackle this problem by clustering targets while estimating the camera location and orientation for each cluster separately through a cover-set coverage method. We also leverage partial knowledge of target mobility to enhance the efficiency of our proposed algorithms. Three computationally efficient approaches are developed: predictive fuzzy, predictive incremental fuzzy, and local incremental fuzzy. The objective is to find a compromise among coverage efficiency, traveled distance, number of drones required, and complexity. The targets move according to one of the following three possible mobility patterns: random waypoint, Manhattan grid, and reference point group mobility patterns. The feasibility of our algorithms and their performance are also tested on a real-world indoor testbed called drone-be-gone, using Parrot AR.Drone quadcopters. The deployment confirms the results obtained with simulations and highlights the suitability of the proposed solutions for real-time applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独妙海发布了新的文献求助10
刚刚
辣目童子完成签到 ,获得积分10
刚刚
刚刚
哈哈发布了新的文献求助20
刚刚
刚刚
刚刚
乐乐应助张宁采纳,获得10
1秒前
传奇3应助张宁采纳,获得10
1秒前
daladala发布了新的文献求助10
1秒前
1秒前
ZTF完成签到,获得积分10
1秒前
领导范儿应助Wakey采纳,获得10
2秒前
田様应助刘刘大顺采纳,获得10
2秒前
香菜碗里来完成签到,获得积分10
2秒前
ALICE渡发布了新的文献求助10
2秒前
干净的小馒头完成签到 ,获得积分10
3秒前
3秒前
3秒前
暖暖发布了新的文献求助30
3秒前
wxy发布了新的文献求助30
4秒前
用户0921coins完成签到,获得积分10
4秒前
4秒前
gelinhao完成签到,获得积分10
4秒前
Timing侠完成签到,获得积分10
5秒前
6秒前
LL完成签到,获得积分10
6秒前
6秒前
zhanglongquan发布了新的文献求助10
6秒前
7秒前
xuexue完成签到,获得积分10
7秒前
CipherSage应助suka采纳,获得10
8秒前
小欣完成签到,获得积分10
8秒前
wlw完成签到,获得积分10
8秒前
zz发布了新的文献求助10
9秒前
MrIShelter发布了新的文献求助10
9秒前
香蕉你个笨啦啦完成签到,获得积分10
9秒前
IanYoung71发布了新的文献求助10
10秒前
10秒前
宁幼萱完成签到,获得积分10
10秒前
Cactus应助殷勤的可兰采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149