甲醇
催化作用
X射线光电子能谱
纳米颗粒
甲醇燃料
热解
化学工程
拉曼光谱
直接甲醇燃料电池
材料科学
碳纤维
动力学
燃料电池
化学动力学
化学
工作(物理)
无机化学
纳米技术
电催化剂
反应机理
原位
标识
DOI:10.1002/slct.202505445
摘要
Abstract Direct methanol fuel cells (DMFCs) face significant challenges due to sluggish methanol oxidation reaction (MOR) kinetics and catalyst poisoning by carbon intermediates (e.g., CO ads ). To address this, we rationally designed nitrogen‐doped carbon (NC) carriers with tailored N‐configurations (pyridinic‐N, pyrrolic‐N, and graphitic‐N) via controlled pyrolysis temperatures (700–1000 °C) and anchored Pt nanoparticles (NPs) to enhance metal‐support interaction (MSI). The NC‐900 carrier achieved optimal N‐configuration distribution (56.7% pyridinic‐N, 25.2% pyrrolic‐N, 18.1% graphitic‐N) and the highest defect density ( I D /I G = 1.12), enabling ultra‐dispersed Pt NPs (1.69 nm) and strong electron donation to Pt. XPS confirmed a 61.2% Pt° content in Pt/NPC‐900, facilitating efficient methanol adsorption/activation. In alkaline media, Pt/NPC‐900 delivered a record mass activity of 4687.5 mA mg −1 Pt ‐ 4.36 × higher than Pt/PC—along with exceptional stability (79.6 % current retention after 500 cycles). In situ Raman spectroscopy revealed a non‐CO pathway, circumventing poisoning intermediates. This work establishes a precise N‐configuration engineering strategy to optimize MSI for next‐generation DMFC catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI