Intelligent vehicle pedestrian light (IVPL): A deep reinforcement learning approach for traffic signal control

交通信号灯 行人 强化学习 计算机科学 人工智能 模拟 控制(管理) 实时计算 运输工程 工程类
作者
Mobin Yazdani,Majid Sarvi,Saeed Asadi Bagloee,Neema Nassir,Jeff Price,Hossein Parineh
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:149: 103991-103991 被引量:34
标识
DOI:10.1016/j.trc.2022.103991
摘要

Deep reinforcement learning (RL) has been widely studied in traffic signal control. Despite the promising results that indicate the superiority of deep RL in terms of the quality of solution and optimality over fixed time signal control, the real-world multi-modal traffic flows, especially pedestrians, are not properly considered nor sufficiently investigated. This study presents a novel deep RL-based adaptive traffic signal model to control the vehicles and pedestrian flows by allocating an equitable green time to each, aiming at minimizing “total user delays” as opposed to “total vehicle delays” dominantly being used in the literature. Our proposed intelligent vehicle pedestrian light (IVPL) method can perform in the absence or presence of pedestrians, especially when there is jaywalking at the intersection, interrupting vehicle flows. To this end, an extended reward function is designed to capture delays due to vehicle-to-vehicle, vehicle-to-pedestrian, and pedestrian-to-pedestrian interactions, as well as red-light delays for vehicles and pedestrians. To evaluate the performance of IVPL, a microsimulation model of an intersection in city of Melbourne is used as a case-study. The real traffic signal parameters of an existing operation system (SCATS) are employed, and the simulation is calibrated using video-based camera data and loop detectors data collected at intersection. The experimental results demonstrate the superiority of the proposed model over fully actuated traffic signal, not only in terms of the quality of optimal solution, but also considering the fact that the proposed model can minimize the “total user delays”.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研大作战完成签到,获得积分10
1秒前
大泥鳅完成签到,获得积分20
1秒前
1秒前
1秒前
Yy完成签到 ,获得积分10
2秒前
11发布了新的文献求助10
2秒前
云帆完成签到,获得积分10
2秒前
孙一完成签到,获得积分10
3秒前
苹果烧鹅完成签到,获得积分10
3秒前
FashionBoy应助李茂贞采纳,获得10
3秒前
peiqi佩奇完成签到,获得积分10
4秒前
冷艳的芯发布了新的文献求助10
4秒前
张博士完成签到,获得积分10
4秒前
轻松盼望完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
慕青应助DUN采纳,获得10
5秒前
南风知我意完成签到,获得积分20
6秒前
6秒前
6秒前
韩霖完成签到,获得积分10
6秒前
7秒前
风车车完成签到,获得积分10
7秒前
废寝忘食完成签到,获得积分10
8秒前
8秒前
小蘑菇应助Rinohalt采纳,获得10
8秒前
隐形曼青应助Gavin采纳,获得10
9秒前
卿久久完成签到,获得积分10
9秒前
9秒前
椰子在长江送礼物应助111采纳,获得10
9秒前
离床糖学高材生完成签到 ,获得积分10
10秒前
10秒前
10秒前
ln发布了新的文献求助10
10秒前
11秒前
嬛嬛完成签到,获得积分10
11秒前
qiaozhi乔治完成签到,获得积分20
12秒前
12秒前
13秒前
梦梦完成签到 ,获得积分10
13秒前
冰淇淋发布了新的文献求助30
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792936
求助须知:如何正确求助?哪些是违规求助? 3337536
关于积分的说明 10285691
捐赠科研通 3054189
什么是DOI,文献DOI怎么找? 1675858
邀请新用户注册赠送积分活动 803846
科研通“疑难数据库(出版商)”最低求助积分说明 761578