钝化
钙钛矿(结构)
材料科学
光伏系统
能量转换效率
接受者
晶界
扩散
相关系数
图层(电子)
光电子学
化学工程
计算机科学
纳米技术
机器学习
电气工程
复合材料
热力学
物理
工程类
微观结构
凝聚态物理
作者
Mohamed M. Elsenety,Eleftherios Christopoulos,Polycarpos Falaras
出处
期刊:Solar RRL
[Wiley]
日期:2023-03-02
卷期号:7 (10)
被引量:9
标识
DOI:10.1002/solr.202201016
摘要
To prevent the degradation of perovskite solar cells (PSCs) and optimize the solar energy conversion process, a donor–π–acceptor (D–π–A) organic blue dye as a passivation layer and as a hole‐transporting layer is introduced. The terminal chains of D–π–A dye confer the ultrahydrophobic character (contact angle > 100°) of the interface layer, protecting the perovskite from ambient moisture while mitigating ionic diffusion in the device. The dye interlayer primarily improves the perovskite by reducing grain boundary defects. The perovskite/D–π–A architecture enhances the interfacial hole extraction, suppressing nonradiative carrier recombination and enabling power conversion efficiency (PCE) reaching 20.90%, outperforming by 2.05% the PCE of control cells. Unsealed PSCs retain 84% and 62% of their efficiency after photovoltaic operation for 1000 and 3000 h, respectively. Statistical correlation of bivariant and multivariant analyses of photovoltaic parameters is performed and Pearson's correlation identifies underlying patterns in experimental data collections. Machine learning (ML) of regression algorithms is used to predict the minimum errors and the coefficient of determination, which confirm the analysis quality. The linear regression ML model suggests the importance of photovoltaic parameters ( R s > V mpp > J sc > V oc > fill factor > J mpp > R sh ) toward higher PCE. An efficient online prediction model is also developed to support the estimation of PCEs with high accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI