持久性(不连续性)
毒性
聚苯乙烯
环境化学
环境科学
化学
地质学
岩土工程
有机化学
聚合物
作者
Mingqi Yao,Mu Li,Ziwei Gao,Xiangang Hu
标识
DOI:10.1016/j.scitotenv.2023.162853
摘要
Polystyrene (PS) often found in the ocean is one of the most commonly used plastic polymers in the world and can exist in different particle sizes. In particular, PS degrades relatively faster and widely accumulates at the nanoscale. Therefore, the penetration is strong and it is easy to enter the body and cause adverse effects. However, the persistence or recovery of their toxicity remains largely unclear. Here, we designed two subexperiments (exposure and recovery experiments) and investigated the persistence of the toxicity of polystyrene (PS) NPs at a wide concentration range (0.01–10 mg/L) to diatoms (Phaeodactylum tricornutum). PS-NPs significantly inhibited algal growth and clearly wrinkled the surfaces of cells, membrane permeability was significantly increased, and the steady-state state of cell redox and mitochondrial membrane potential was disturbed. However, in the recovery experiment, the increased membrane permeability was observed to persist, but the induced oxidative damage was reversible, and the absorbed NPs could be excreted. Integrated omics techniques (metabolomics and transcriptomics) revealed that PS-NPs significantly disrupts cell metabolism, including disturbances in fatty acid biosynthesis and enhanced biosynthesis of phenylalanine, tyrosine, and tryptophan. Inhibition of fatty acid, amino acid, energy and carbohydrate metabolism and disturbance of the antioxidant system contribute to the persistence of toxicity. These findings highlight the phenomena and mechanisms of the persistence of phytotoxicity and are critical to the accurate assessment of NPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI